预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017年江西省赣州市高考数学一模试卷(文科)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U={1,2,3,4},A={1,2},B={2,4},则∁U(A∪B)=()A.{2}B.{3}C.{1,2,4}D.{1,4}2.复数z满足(z﹣i)(2﹣i)=5,则z所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.设命题p:函数y=f(x)不是偶函数,命题q:函数y=f(x)是单调函数,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.从1,2,3,4,5中任意取出两个不同的数,则这两个数不相邻的概率为()A.0.3B.0.4C.0.5D.0.65.设变量x,y满足约束条件,则目标函数z=2x+3y的最大值是()A.10B.9C.8D.76.等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则{an}的公比为()A.2B.3C.D.7.如图是一个几何体挖去另一个几何体所得的三视图,若主视图中长方形的长为2,宽为1,则该几何体的表面积为()A.(+1)πB.(+2)πC.(+3)πD.(+4)π8.抛物线C:y2=2px(p>0)的焦点为F,A是C上一点,若A到F的距离是A到y轴距离的两倍,且三角形OAF的面积为1(O为坐标原点),则p的值为()A.1B.2C.3D.49.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图,f()=﹣1,则f(0)的值为()A.1B.C.D.10.秦九韶是我国南宋时代的数学家,其代表作《数书九章》是我国13世纪数学成就的代表之一,秦九韶利用其多项式算法,给出了求高次代数方程的完整算法,这一成就比西方同样的算法早五六百年,如图是该算法求函数f(x)=x3+x+1零点的程序框图,若输入x=﹣1,c=1,d=0.1,则输出的x的值为()A.﹣0.6B.﹣0.69C.﹣0.7D.﹣0.7111.已知函数f(x)=|2x﹣2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是()A.1<x1<2,x1+x2<2B.1<x1<2,x1+x2<1C.x1>1,x1+x2<2D.x1>1,x1+x2<112.在三棱锥ABCD中,BC⊥CD,Rt△BCD斜边上的高为1,三棱锥ABCD的外接球的直径是AB,若该外接球的表面积为16π,则三棱锥ABCD体积的最大值为()A.B.C.1D.二、填空题(本大题共4小题,每小题5分,共20分)13.设向量=(1,x),=(x,1),若•=﹣||•||,则x=.14.若曲线f(x)=在点(a,f(a))处的切线与两坐标轴围成的图形的面积为,则a的值为.15.设等差数列{an}的公差d<0,前n项和为Sn,已知3是﹣a2与a9的等比中项,S10=20,则d=.16.已知双曲线C的方程为﹣=1(a>0,b>0),若C的右支上存在两点A、B,使∠AOB=120°,其中O为坐标原点,则曲线C的离心率的取值范围是.三、解答题17.(12分)设三角形ABC的内角A,B,C的对边分别为a,b,c,3a=5csinA,cosB=﹣.(1)求sinA的值;(2)设△ABC的面积为,求b.18.(12分)某学校对男女学生进行有关“习惯与礼仪”的调查,分别随机抽查了18名学生进行评分(百分制:得分越高,习惯与礼仪越好),评分记录如下:男生:44,46,46,52,54,55,56,57,58,58,63,66,70,73,75,85,90,94.女生:51,52,55,58,63,63,65,69,69,70,74,78,77,77,83,83,89,100(1)请用茎叶图表示上面的数据,并通过茎叶图比较男女生“习惯与礼仪”评分的平均值及分散程度(不要求计算出具体的值,给出结论即可).(2)记评分在60分以下的等级为较差,评分在60分以上的等级为较好,请完成2×2列联表,并判断是否有95%的把握认为“习惯与礼仪”与性别有关?并说明理由.等级性别较差较好合计男生女生合计附:P(K2≥k)0.0500.0100.001K2=k3.8416.63510.82819.(12分)如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,A1B⊥AC1.(1)求证:平面A1BC⊥平面ABC1;(2)若∠A1AC=60°,CA=2,求三棱锥A1﹣B1BC的体积.20.(12分)离心率为的椭圆E:+=1(a>b>0)的一个焦点与圆x2+y2﹣2x=0的圆心重合.(1)求E的方程;(2)矩形ABCD的两顶点C、D在直线y=x+2,A、B在椭圆E上,若矩形ABCD的周长为,求直线