预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017年江西省赣州市高考数学一模试卷(理科) 一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.sin15°+cos165°的值为() A. B. C. D. 2.设命题p:函数y=f(x)不是偶函数,命题q:函数y=f(x)是单调函数,则p是q的() A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 3.如图是一个几何体挖去另一个几何体所得的三视图,若主视图中长方形的长为2,宽为1,则该几何体的体积为() A. B. C. D. 4.抛物线C:y2=2px(p>0)的焦点为F,A是C上一点,若A到F的距离是A到y轴距离的两倍,且三角形OAF的面积为1(O为坐标原点),则p的值为() A.1 B.2 C.3 D.4 5.若(x﹣2y)2n+1的展开式中前n+1项的二项式系数之和为64,则该展开式中x4y3的系数是() A.﹣ B.70 C. D.﹣70 6.二战中盟军为了知道德国“虎式”重型坦克的数量,采用了两种方法,一种是传统的情报窃取,一种是用统计学的方法进行估计,统计学的方法最后被证实比传统的情报收集更精确,德国人在生产坦克时把坦克从1开始进行了连续编号,在战争期间盟军把缴获的“虎式”坦克的编号进行记录,并计算出这些编号的平均值为675.5,假设缴获的坦克代表了所有坦克的一个随机样本,则利用你所学过的统计知识估计德国共制造“虎式”坦克大约有() A.1050辆 B.1350辆 C.1650辆 D.1950辆 7.复数z1、z2满足|z1|=|z2|=1,z1﹣z2=,则z1•z2=() A.1 B.﹣1 C.i D.﹣i 8.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图,f()=﹣1,则f(0)的值为() A.1 B. C. D. 9.秦九韶是我国南宋时代的数学家,其代表作《数书九章》是我国13世纪数学成就的代表之一,秦九韶利用其多项式算法,给出了求高次代数方程的完整算法,这一成就比西方同样的算法早五六百年,如图是该算法求函数f(x)=x3+x+1零点的程序框图,若输入x=﹣1,c=1,d=0.1,则输出的x的值为() A.﹣0.6 B.﹣0.69 C.﹣0.7 D.﹣0.71 10.已知函数f(x)=|2x﹣2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是() A.1<x1<2,x1+x2<2 B.1<x1<2,x1+x2<1 C.x1>1,x1+x2<2 D.x1>1,x1+x2<1 11.在三棱锥ABCD中,BC⊥CD,Rt△BCD斜边上的高为1,三棱锥ABCD的外接球的直径是AB,若该外接球的表面积为16π,则三棱锥ABCD体积的最大值为() A. B. C.1 D. 12.在△ABC中,D、E是BC边上两点,BD、BA、BC构成以2为公比的等比数列,BD=6,∠AEB=2∠BAD,AE=9,则三角形ADE的面积为() A.31.2 B.32.4 C.33.6 D.34.8 二、填空题(本大题共4小题,每小题5分,共20分) 13.设向量=(1,x),=(x,1),若•=﹣||•||,则x=. 14.设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为. 15.设f(x)=的图象在点(1,1)处的切线为l,则曲线y=f(x),直线l及x轴所围成的图形的面积为. 16.已知双曲线C的方程为﹣=1(a>0,b>0),若C的右支上存在两点A、B,使∠AOB=120°,其中O为坐标原点,则曲线C的离心率的取值范围是. 三、解答题 17.设等差数列{an}的公差d>0,前n项和为Sn,已知3是﹣a2与a9的等比中项,S10=﹣20. (1)求数列{an}的通项公式; (2)设bn=,求数列{bn}的前n项和Tn(n≥6). 18.如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,A1B⊥AC1. (1)求证:平面A1BC⊥平面ABC1; (2)若直线AA1与底面ABC所成的角为60°,求直线AA1与平面ABC1所成角的正弦值. 19.《最强大脑》是江苏卫视推出国内首档大型科学类真人秀电视节目,该节目集结了国内外最顶尖的脑力高手,堪称脑力界的奥林匹克,某校为了增强学生的记忆力和辨识力也组织了一场类似《最强大脑》的PK赛,A、B两队各由4名选手组成,每局两队各派一名选手PK,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分,假设每局比赛两队选手获胜的概率均为0.5,且各局比赛结果相互独立. (1)求比赛结束时A队的得分高于B队的得分的概率; (2)求比赛结束时B队得分X的分布列和期望.