预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

对矩阵分解及其应用矩阵分解是指将一个矩阵表示为结构简单或具有特殊性质若干矩阵之积或之和,大体分为三角分解、QR分解、满秩分解和奇异值分解。矩阵的分解是很重要的一部分内容,在线性代数中时常用来解决各种复杂的问题,在各个不同的专业领域也有重要的作用。秩亏网平差是测量数据处理中的一个难点,不仅表现在原理方面,更表现在计算方面,而应用矩阵分解来得到未知数的估计数大大简化了求解过程和难度。矩阵的三角分解如果方阵A可表示为一个下三角矩阵L和一个上三角矩阵U之积,即A=LU,则称A可作三角分解。矩阵三角分解是以Gauss消去法为根据导出的,因此矩阵可以进行三角分解的条件也与之相同,即矩阵A的前n-1个顺序主子式都不为0,即∆k≠0.所以在对矩阵A进行三角分解的着手的第一步应该是判断是否满足这个前提条件,否则怎么分解都没有意义。矩阵的三角分解不是唯一的,但是在一定的前提下,A=LDU的分解可以是唯一的,其中D是对角矩阵。矩阵还有其他不同的三角分解,比如Doolittle分解和Crout分解,它们用待定系数法来解求A的三角分解,当矩阵阶数较大的时候有其各自的优点,使算法更加简单方便。矩阵的三角分解可以用来解线性方程组Ax=b。由于A=LU,所以Ax=b可以变换成LUx=b,即有如下方程组:Ly=bUx=y先由Ly=b依次递推求得y1,y2,……,yn,再由方程Ux=y依次递推求得xn,xn-1,……,x1.必须指出的是,当可逆矩阵A不满足∆k≠0时,应该用置换矩阵P左乘A以便使PA的n个顺序主子式全不为零,此时有:Ly=pbUx=y这样,应用矩阵的三角分解,线性方程组的解求就可以简单很多了。矩阵的QR分解矩阵的QR分解是指,如果实非奇异矩阵A可以表示为A=QR,其中Q为正交矩阵,R为实非奇异上三角矩阵。QR分解的实际算法各种各样,有Schmidt正交方法、Givens方法和Householder方法,而且各有优点和不足。2.1.Schmidt正交方法的QR分解Schmidt正交方法解求QR分解原理很简单,容易理解。步骤主要有:1)把A写成m个列向量a=(a1,a2,……,am),并进行Schmidt正交化得=(α1,α2,……,αm);2)单位化,并令Q=(β1,β2,……,βm),R=diag(α1,α2,……,αm)K,其中a=K;3)A=QR.这种方法来进行QR分解,过程相对较为复杂,尤其是计算量大,尤其是阶数逐渐变大时,就显得更加不方便。2.2.Givens方法的QR分解Givens方法求QR分解是利用旋转初等矩阵,即Givens矩阵Tij(c,s)来得到的,Tij(c,s)是正交矩阵,并且det(Tij(c,s))=1。Tij(c,s)的第i行第i列和第j行第j列为cos,第i行第j列和第j行第i列分别为sin和-sin,其他的都为0.任何n阶实非奇异矩阵A可通过左连乘Tij(c,s)矩阵(乘积为T)化为上三角矩阵R,另Q=T-,就有A=QR。该方法最主要的是在把矩阵化为列向量的基础上找出c和s,然后由此把矩阵的一步步向上三角矩阵靠近。Givens方法相对Schmidt正交方法明显的原理要复杂得多,但是却计算量小得多,矩阵Tij(c,s)固有的性质很特别可以使其在很多方面的应用更加灵活。2.3.Householder方法的QR分解Householder方法分解矩阵是利用反射矩阵,即Householder矩阵H=E-2uuT,其中u是单位列向量,H是正交矩阵,detH=-1。可以证明,两个H矩阵的乘积就是Givens矩阵,并且任何实非奇异矩阵A可通过连乘Householder矩阵(乘积为S)化为上三角矩阵R,则A=QR。这种方法首要的就是寻找合适的单位列向量去构成矩阵H,过程和Givens方法基本相似,但是计算量要小一些。矩阵的QR分解可以用来解决线性最小二乘法的问题,也可以用来降低矩阵求逆的代价。矩阵的求逆是件不小的工程,尤其是阶数慢慢变大的情况时,而用先把矩阵QR分解成正交矩阵和上三角矩阵,就容易多了,况且正交矩阵的转置就是逆,这一点是其他的矩阵分解无法比拟的。在解求线性方程组中,如果系数矩阵的阶数比较大,可以利用QR分解来使计算简单化。另外,QR分解考虑的是n阶矩阵,其他的矩阵是不能用这种方法进行分解,由于QR分解的这一前提条件,使得下面提到的满秩矩阵分解和奇异值分解就有了其特殊的意义。满秩分解满秩分解也称最大秩分解,前面的QR分解是面对n阶矩阵的,而满秩分解可以处理长方阵。满秩分解是指,把秩为r的mxn矩阵A分解成A=FG,其中F是秩为r的mxr阶矩阵,G是秩为r的rxn阶矩阵。满秩矩阵的解求可以通过初等变换法,但是必须经过多次求逆,所以就利用Hermite行标准形来完成。把矩阵A经过变换成为Hermite行标准形B,B的j1,