预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

初一下册数学实数教案初一下册数学实数教案作为一位杰出的教职工,总不可避免地需要编写教案,借助教案可以让教学工作更科学化。教案应该怎么写呢?以下是小编整理的初一下册数学实数教案,欢迎阅读,希望大家能够喜欢。初一下册数学实数教案1教学目的1、使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。2、熟识等边三角形的性质及判定、3、通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。教学重点等腰三角形的性质及其应用。教学难点简洁的逻辑推理。教学过程一、复习巩固1、叙述等腰三角形的性质,它是怎么得到的?等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的'对称轴,所以BD=CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。2、若等腰三角形的两边长为3和4,则其周长为多少?二、新课在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。等边三角形具有什么性质呢?1、请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。2、你能否用已知的知识,通过推理得到你的猜想是正确的?等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。3、上面的条件和结论如何叙述?等边三角形的各角都相等,并且每一个角都等于60°。等边三角形是轴对称图形吗?如果是,有几条对称轴?等边三角形也称为正三角形。例1、在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?问题2:求∠1是否还有其它方法?三、练习巩固1、判断下列命题,对的打“√”,错的打“×”。a、等腰三角形的角平分线,中线和高互相重合()b、有一个角是60°的等腰三角形,其它两个内角也为60°()2、如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。3、P54练习1、2。四、小结由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。五、作业:1、课本P57第7,9题。2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。初一下册数学实数教案2教学目标1、通过实际操作,了解什么叫做轴对称变换。2、如何作出一个图形关于一条直线的轴对称图形。教学重点1、轴对称变换的定义。2、能够按要求作出简单平面图形经过轴对称后的图形。教学难点1、作出简单平面图形关于直线的轴对称图形。2、利用轴对称进行一些图案设计。教学过程Ⅰ、设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题。在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样。将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,得到的两个图案是关于折痕成轴对称的图形。准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕。再将纸打开后铺平,位于折痕两侧的墨迹图案也是对称的这节课我们就是来作简单平面图形经过轴对称后的图形。Ⅱ、导入新课由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分。类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案。对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途。下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下。结论:由一个平面图形呆以得到它关于一条直线L对称的图形,这个图形与原