预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

中考数学复习资料,精心整编吐血推荐,如若有用请打赏支持,感激不尽!相似的应用一、选择题1、(第10题)10.如图,△ABC中,点DE分别是ABC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.其中正确的有【】(A)3个(B)2个(C)1个(D)0个答案:AABOCD(第4题)2、如图,AB∥CD,AD,BC相交于O点,∠BAD=35°,∠BOD=76°,则∠C的度数是()A.31°B.35°C.41°D.76°答案:C3、平面直角坐标系中,已知点O(0,0)、A(0,2)、B(1,0),点P是反比例函数图象上的一个动点,过点P作PQ⊥x轴,垂足为点Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有()A.1个B.2个C.3个D.4个答案:D4、(2012年中考数学新编及改编题试卷)图(1)、图(2)、图(3)分别表示甲、乙、丙三人由A地到B地的路线图。已知;甲的路线为:ACB。乙的路线为:ADEFB,其中E为AB的中点。丙的路线为:AGHKB,其中H在AB上,且AH>HB。若符号「」表示「直线前进」,则根据图(1)、图(2)、图(3)的数据,则三人行进路线长度的大小关系为()(A)甲=乙=丙(B)甲<乙<丙(C)乙<丙<甲(D)丙<乙<甲ABCABDABGI50EF6070506070506070506070506070HK图(1)图(2)图(3)答案:A5、(2012广西贵港)小刚身高,测得他站立在阳光下的影子长为,紧接着他把手臂竖直举起,测得影子长为,那么小刚举起的手臂超出头顶A.B.C.D.答案:A填空题1、(2012四川省泸县福集镇青龙中学一模)如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.第1题图此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.答案:72、[淮南市洞山中学第四次质量检测,12,5分]将一个矩形纸片ABCD沿AD和BC的中点的连线对折,要使矩形AEFB与原矩形相似,则原矩形的长和宽的比应为答案:3、(杭州市2012年中考数学模拟)已知△ABC与△DEF相似且相似比为3︰5,则△ABC与△DEF的面积比为.答案:9︰25;4、(盐城市亭湖区2012年第一次调研考试)如图4,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB、CD上滑动,当CM=时,△AED与以M、N、C为顶点的三角形相似。答案CM=或CM=;ABCDEO5、(2012年,瑞安市模考)如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD=8,则CE长为.答案:6、(2012年春期福集镇青龙中学中考模拟)如图,为了测量某棵树的高度,小明用长为2m的竹竿(第1题)做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.答案15.7解答题1、(海南省2012年中考数学科模拟)(本题满分13分)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,对称轴为直线x=1,已知:A(-1,0)、C(0,-3)。(1)求抛物线y=ax2+bx+c的解析式;(2)求△AOC和△BOC的面积比;ABOC-11yx第24题图(3)在对称轴上是否存在一个P点,使△PAC的周长最小。若存在,请你求出点P的坐标;若不存在,请你说明理由。答案:解:(1)∵抛物线与x轴交于A(-1,0)、B两点,且对称轴为直线x=1,∴点B的坐标为(3,0),∴可设抛物线的解析式为y=a(x+1)(x-3)…………2分yABOC-11x第24题图PD又∵抛物线经过点C(0,-3),∴-3=a(0+1)(0-3)∴a=1,∴所求抛物线的解析式为y=(x+1)(x-3),即y=x2-2x-3…………………………4分(2)依题意,得OA=1,OB=3,∴S△AOC∶S△BOC=OA·OC∶OB·OC=OA∶OB=1∶3…………………………………8分(3)在抛物线y=x2-2x-3上,存在符合条件的点P。…9分解法1:如图,连接BC,交对称轴于点P,连接AP、AC。∵AC长为定值,∴要使△PAC的周长最小,只需PA+PC最小。∵点A关于对称轴x=1的对称点是点B(3,0),抛物线y=x2-2x-3与y轴交点C的坐标为(0,3)∴由几何知识可知,PA+PC=PB+PC为最小。…………11分设直线BC的解析式为y=kx-3,将B(3,0)代入得3k-3=0∴k=1。∴y=x-3∴当x=1时,y=-2.∴点P的坐标为(