预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第1章函数与极限总结1、极限的概念(1)数列极限的定义给定数列{xn},若存在常数a,对于任意给定的正数不论它多么小总存在正整数N使得对于n>N时的一切n恒有|xna|<则称a是数列{xn}的极限或者称数列{xn}收敛于a记为limxna或xna(n)n(2)函数极限的定义设函数f(x)在点x0的某一去心邻域内(或当xM0)有定义,如果存在常数A对于任意给定的正数(不论它多么小)总存在正数(或存在X)使得当x满足不等式0<|xx0|时(或当xX时)恒有|f(x)A|那么常数A就叫做函数f(x)当xx0(或x)时的极限记为limf(x)A或f(x)A(当xx0)(或limf(x)A)xx0x类似的有:如果存在常数A对0,0,当x:x0xx0(x0xx0)时,恒有f(x)A,则称A为f(x)当xx时的左极限(或右极限)记作limf(x)A(且limf(x)A)0xx0xx0显然有limf(x)Alimf(x)limf(x)A)xx0xx0xx0如果存在常数A对0,X0,当xX(且xX)时,恒有f(x)A,则称A为f(x)当x(或当x)时的极限记作limf(x)A(且limf(x)A)xx显然有limf(x)Alimf(x)limf(x)A)xxx2、极限的性质(1)唯一性若limxna,limxnb,则abnn若limf(x)Alimf(x)B,则ABxx(xx0)(xx0)(2)有界性(i)若limxna,则M0使得对nN,恒有xnMn(ii)若limf(x)A,则M0当x:0xx0时,有f(x)Mxx0(iii)若limf(x)A,则M0,X0当xX时,有f(x)Mx(3)局部保号性(i)若limxna且a0(且a0)则NN,当nN时,恒有nxn0(且xn0)(ii)若limf(x)A,且A0(且A0),则0当x:0xx0时,xx0有f(x)0(且f(x)0)3、极限存在的准则(i)夹逼准则给定数列{xn},{yn},{zn}若①n0N,当nn0时有ynxnzn②limynlimzna,nn则limxnan给定函数f(x),g(x),h(x),0若①当xU(x0,r)(或xX)时,有g(x)f(x)h(x)②limg(x)limh(x)A,xx(xx0)(xx0)则limf(x)Ax(xx0)(ii)单调有界准则给定数列,若①对有②使对{xn}nNxnxn1(且xnxn1)M(m)nN有xM(且xm)则limxn存在nnn若f(x)在点x的左侧邻域(或右侧邻域)单调有界,则limf(x)(或0xx0limf(x))存在xx04、极限的运算法则(1)若limf(x)A,limg(x)Bxx(xx0)(xx0)则(i)lim[f(x)g(x)]ABx(xx0)(ii)lim[f(x)g(x)]ABx(xx0)f(x)A(iii)lim(B0)xg(x)B(xx0)0(2)设(i)ug(x)且limg(x)u0(ii)当xU(x0,)时g(x)u0xx0(iii)limf(u)Auu0则limf[g(x)]limf(u)Axx0uu05、两个重要极限sinxsinu(x)(1)lim1lim1x0xu(x)0u(x)sinx11lim0,limxsin1,limxsin0xxxxx0xxu(x)11(2)lim1elim1e;xxu(x)u(x)11lim(1x)xelim1v(x)v(x)e;x0v(x)06、无穷小量与无穷大量的概念(1)若lim(x)0,即对0,0,当x:0xx0(或x(xx0)xX)时有(x),则称当xx0(且且x)(x)无穷小量(2)若limf(x)即对M0,0(且X0),当x(xx0)x:0xx0(或xX)时有f(x)M则称当xx0(且且x)f(x)无穷大量7、无穷小量与有极限的量及无穷大量的关系,无穷小量的运算法则(1)limf(x)Af(x)A(x