预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

向量法证明正弦定理人教版向量法证明正弦定理向量法可以证明很多的数学定理的,比如正弦定理就不错。下面就是百分网小编给大家整理的向量法证明正弦定理内容,希望大家喜欢。向量法证明正弦定理篇1证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R向量法证明正弦定理篇2如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C由图1,AC+CB=AB(向量符号打不出)在向量等式两边同乘向量j,得·j·AC+CB=j·AB∴│j││AC│cos90°+│j││CB│cos(90°-C)=│j││AB│cos(90°-A)∴asinC=csinA∴a/sinA=c/sinC同理,过点C作与向量CB垂直的'单位向量j,可得c/sinC=b/sinB∴a/sinA=b/sinB=c/sinC记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c∴a+b+c=0则i(a+b+c)=i·a+i·b+i·c=a·cos(180-(C-90))+b·0+c·cos(90-A)=-asinC+csinA=0向量法证明正弦定理篇3正弦定理是三角学中的一个定理。它指出了三角形三边、三个内角以及外接圆半径之间的关系。定理内容在△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。则有a/sinA=b/sinB=c/sinC=2R即,在一个三角形中,各边和它所对角的正弦之比相等,该比值等于该三角形外接圆的直径长度。定理变形a:b:c=sinA:sinB:sinC应用领域在解三角形中,有以下的应用领域:(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。正弦定理变形形式a=2RSinA。b=2RsinB。c=2RsincasinB=bsinA,bsinC=csinB,asinC=csinA定理的意义正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。由正弦定理在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。