预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

-16-2015-2016学年甘肃省兰州一中高二(上)期中数学试卷(理科)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在答题卡上.)1.不等式≥﹣1的解集为()A.(﹣∞,0]∪(1,+∞)B.(﹣∞,0)∪D.∪(1,+∞)B.(﹣∞,0)∪D.∪(1,+∞).故选:A.【点评】本题考查分式不等式的解法,考查计算能力.2.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于()A.40B.42C.43D.45【考点】等差数列的性质.【专题】计算题.【分析】先根据a1=2,a2+a3=13求得d和a5,进而根据等差中项的性质知a4+a5+a6=3a5求得答案.【解答】解:在等差数列{an}中,已知a1=2,a2+a3=13,得d=3,a5=14,∴a4+a5+a6=3a5=42.故选B【点评】本题主要考查了等差数列的性质.属基础题.3.已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.【考点】等比数列.【分析】由数列{an}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.4.在△ABC中,角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.B.C.D.【考点】余弦定理的应用;正弦定理.【专题】应用题;解三角形.【分析】根据sinC=2sinB,由正弦定理得,,再利用余弦定理可得结论.【解答】解:因为sinC=2sinB,所以由正弦定理得,所以,再由余弦定理可得,所以A=.故选A.【点评】本小题主要考查正弦定理和余弦定理在解三角形中的应用,对学生的推理论证能力和数形结合思想提出一定要求.5.等差数列{an}中,a1>0,S3=S10,则当Sn取最大值时,n的值为()A.6B.7C.6或7D.不存在【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】由等差数列的性质和求和公式易得a7=0,进而可得前6项为正数,第7项为0,从第8项开始为负数,易得答案.【解答】解:∵等差数列{an}中,a1>0,S3=S10,∴S10﹣S3=a4+a5+…+a10=7a7=0,即a7=0∴等差数列{an}中前6项为正数,第7项为0,从第8项开始为负数,∴当Sn取最大值时,n的值为6或7故选:C【点评】本题考查等差数列的前n项和的最值,从数列项的正负入手是解决问题的关键,属基础题.6.已知a,b为非零实数,若a>b且ab>0,则下列不等式成立的是()A.a2>b2B.>C.ab2>a2bD.<【考点】不等式的基本性质.【专题】不等式的解法及应用.【分析】A.取a=1,b=﹣2,即可判断出;B.取a=1,b=﹣2,即可判断出;C.取a=2,b=1,即可判断出;D.由于a,b为非零实数,a>b,可得,化简即可得出.【解答】解:A.取a=1,b=﹣2,不成立;B.取a=1,b=﹣2,不成立;C.取a=2,b=1,不成立;D.∵a,b为非零实数,a>b,∴,化为,故选:D.【点评】本题考查了不等式的基本性质,属于基础题.7.下列命题中正确的是()A.的最小值是2B.的最小值是2C.的最大值是D.的最小值是【考点】基本不等式.【专题】计算题.【分析】根据基本不等式的使用范围:正数判断A不对,利用等号成立的条件判断B不对,根据判断C正确、D不对.【解答】解:A、当x=﹣1时,f(﹣1)=﹣2,故A不对;B、∵=≥2,当且仅当时取等号,此时无解,故最小值取不到2,故B不对;C、∵x>0,∴,当且仅当时等号成立,∴,故C正确;D、、∵x>0,∴,当且仅当时等号成立,则,故D不对;故选D.【点评】本题考查了基本不等式的应用,利用基本不等式求函数的最值,注意“一正、二定、三相等”的验证.8.在△ABC中,若b2sin2C+c2sin2B=2bccosBcosC,则△ABC是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形【考点】三角形的形状判断.【专题】计算题.【分析】利用正弦定理化简已知的等式,根据sinBsinC不为0,在等式两边同时除以sinBsinC,移项后再根据两角和与差的余弦函数公式化简,可得出cos(B+C)=0,根据B和C都为三角形的内角,可得两角之和为直角,从而判断出三角形ABC为直角三角形.【解答】解:根据正弦定理===2R,得到a=2RsinA,b=2RsinB,c=2RsinC