预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

微专题79利用点的坐标处理解析几何问题有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。一、基础知识:1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。2、利用点坐标解决问题的优劣:(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受形式的约束(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点的坐标也变得复杂导致运算繁琐。那么此类问题则要考虑看能否有机会进行整体的代入3、求点坐标的几种类型:(1)在联立方程消元后,如果发现交点的坐标并不复杂(不是求根公式的形式),则可考虑把点的坐标解出来(用核心变量进行表示)(2)直线与曲线相交,若其中一个交点的坐标已知,则另一交点必然可求(可用韦达定理或因式分解求解)4、在利用点的坐标处理问题时也要注意运算的技巧,要将运算的式子与条件紧密联系,若能够整体代入,也要考虑整体代入以简化运算。(整体代入是解析几何运算简化的精髓)二、典型例题:例1:已知椭圆上的点到它的两个焦点的距离之和为4,以椭圆的短轴为直径的圆经过这两个焦点,点分别是椭圆的左右顶点(1)求圆和椭圆的方程(2)已知分别是椭圆和圆上的动点(位于轴的两侧),且直线与轴平行,直线分别与轴交于点,求证:为定值解:(1)依题意可得,过焦点,且,再由可得椭圆方程为,圆方程为(2)思路:条件主要围绕着点展开,所以以为核心,设,由与轴平行,可得。若要证明为定值,可从的三角函数值下手,在解析中角的余弦值可以与向量的数量积找到联系,从而能够转化为坐标运算。所以考虑,模长并不利于计算,所以先算,考虑利用条件设出方程,进而坐标可用核心变量表示,再进行数量积的坐标运算可得,从而,即为定值解:设与轴平行,设,由所在椭圆和圆方程可得:由椭圆可知:令,可得:同理:可得,代入可得:,即为定值思路二:本题还可以以其中一条直线为入手点(例如),以斜率作为核心变量,直线与椭圆交于两点,已知点坐标利用韦达定理可解出点坐标(用表示),从而可进一步将涉及的点的坐标都用来进行表示,再计算也可以,计算步骤如下:解:设,由椭圆方程可得:所以设直线,联立方程:,代入到直线方程可得:,由,令可得:设,则由在圆上可得:,再由代入可得:,即为定值例2:设椭圆的左右焦点分别为,右顶点为,上顶点为,已知(1)求椭圆的离心率(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率解:(1)由椭圆方程可知:,即(2)由(1)可得椭圆方程为设以线段为直径的圆经过点联立方程:,整理可得:,解得:,代入直线方程:可知的中点为,圆方程为设直线:,整理可得:,解得:直线的斜率为或例3:(2014,重庆)如图所示,设椭圆的左右焦点分别为,点在椭圆上,,的面积为(1)求椭圆的标准方程(2)设圆心在轴上的圆与椭圆在轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径解:(1)设,由可得:,解得在中,椭圆方程为:(2)如图:设圆与椭圆相交,是两个交点,是圆的切线,且,则由对称性可得:由(1)可得,联立方程,解得(舍)或过且分别与垂直的直线的交点即为圆心由是圆的切线,且,可得:因为为等腰直角三角形例4:已知椭圆的焦距为,设右焦点为,离心率为(1)若,求椭圆的方程(2)设为椭圆上关于原点对称的两点,的中点为,的中点为,若原点在以线段为直径的圆上①证明:点在定圆上②设直线的斜率为,若,求的取值范围解:(1)依题意可得:所以椭圆方程为:(2)①思路:设,则,由此可得坐标(用进行表示),而在以为直径的圆上可得:,所以得到关于的方程,由方程便可判定出点的轨迹解:设,则。因为,且为的中点所以有在以为直径的圆上点在定圆上②消去可得:(*)而,代入(*)可得:所以解得:例5:已知椭圆的上顶点为,左焦点为,离心率为(1)求直线的斜率(2)设直线与椭圆交于点(异于点),过点且垂直于的直线与椭圆交于点(异于点),直线与轴交于点,①求的值②若,求椭圆方程解:(1)由可知设,(2)①设椭圆方程为:联立方程:,整理后可得:可解得:因为设联立方程:,整理后可得:,解得,即设,斜率为,由弦长公式可知:②由①可得:由可得:椭圆方程为例6:已知椭圆的