高中数学讲义100微专题017函数的极值.doc
一吃****仪凡
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
高中数学讲义100微专题017函数的极值.doc
微专题17函数的极值一、基础知识:1、函数极值的概念:(1)极大值:一般地,设函数在点及其附近有定义,如果对附近的所有的点都有,就说是函数的一个极大值,记作,其中是极大值点(2)极小值:一般地,设函数在点及其附近有定义,如果对附近的所有的点都有,就说是函数的一个极小值,记作,其中是极小值点极大值与极小值统称为极值2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点:(1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在
高中数学讲义100微专题006函数的图像.doc
微专题05函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)关于轴对称(当时,恰好就是偶函数)(2)关于轴对称在已知对称轴的情况下,构造形如的等式只需注意两点,一是等式两侧前面的符号相同,且括号内前面的符号相反;二是的取值保证为所给对称轴即可。例如:关于轴对称,或得到均可,只是在求函数值方面,一侧是更为方便(3)是偶函数,则,进而可得到:关于轴对称。①要注意偶函数是指自变量取相反数,函
2022届高中数学讲义微专题17 函数的极值 WORD版含解析.doc
微专题17函数的极值一、基础知识:1、函数极值的概念:(1)极大值:一般地,设函数在点及其附近有定义,如果对附近的所有的点都有,就说是函数的一个极大值,记作,其中是极大值点(2)极小值:一般地,设函数在点及其附近有定义,如果对附近的所有的点都有,就说是函数的一个极小值,记作,其中是极小值点极大值与极小值统称为极值2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点:(1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在
高中数学讲义100微专题014函数的切线问题.doc
微专题14函数的切线问题一、基础知识:(一)与切线相关的定义1、切线的定义:在曲线的某点A附近取点B,并使B沿曲线不断接近A。这样直线AB的极限位置就是曲线在点A的切线。(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A附近的点向不断接近,当与距离非常小时,观察直线是否稳定在一个位置上(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。例如函数在处的切线,与曲线有两个公共点。(3)在定义中,点不断接近包含两个方向,点右边的点向左
高中数学讲义100微专题008函数方程问题的分析.doc
微专题08函数方程问题的分析一、基础知识:1、函数方程:含有未知函数的等式叫做函数方程,例如:都可称为函数方程。在高中阶段,涉及到函数方程有以下几个类型:(1)表示函数的某种性质:例如体现是偶函数;体现是周期为1的周期函数(可详见“函数对称性与周期性”一节)(2)可利用解方程组的思想解出涉及的函数的解析式:例如:,可用代替得,即(3)函数方程也是关于变量的恒等式,所以通过对变量赋特殊值得到某些数的函数值2、双变量函数方程的赋值方法:(1)对均赋特殊值,以得到某些点的函数值,其中有些函数值会对性质的推导起到