预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

西安中学高2020届高三第一次月考文科数学试题一、选择题(本大题共12小题,共60.0分)1.若,则()A.B.C.D.【答案】D【解析】由题意可得:,且:,据此有:.本题选择C选项.【此处有视频,请去附件查看】2.若集合,集合,则图中阴影部分表示A.B.C.D.【答案】A【解析】【分析】将阴影部分对应的集合的运算表示出来,然后根据集合表示元素的范围计算结果.【详解】因为阴影部分是:;又因为,所以或,所以或,所以,又因为,所以,故选:A.【点睛】本题考查根据已知集合计算图所表示的集合,难度较易.对于图中的阴影部分首先要将其翻译成集合间运算,然后再去求解相应值.3.设,是非零向量,“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】,由已知得,即,.而当时,还可能是,此时,故“”是“”的充分而不必要条件,故选A.考点:充分必要条件、向量共线【此处有视频,请去附件查看】4.设,,则A.B.C.D.【答案】A【解析】【分析】根据指数函数、对数函数单调性比较数值大小.【详解】因为,,,所以,故选:A.【点睛】本题考查利用指、对数函数的单调性比较数值大小,难度一般.利用指、对数函数单调性比较大小时,注意利用中间量比较大小,常用的中间量有:.5.若直线被圆截得弦长为4,则最小值是()A.9B.4C.D.【答案】A【解析】圆的标准方程为:(x+1)2+(y﹣2)2=4,它表示以(﹣1,2)为圆心、半径等于2的圆;设弦心距为d,由题意可得22+d2=4,求得d=0,可得直线经过圆心,故有﹣2a﹣2b+2=0,即a+b=1,再由a>0,b>0,可得=()(a+b)=5+≥5+2当且仅当=时取等号,∴的最小值是9.故选:A.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.6.函数在的图像大致是()A.B.C.D.【答案】B【解析】【分析】先判断奇偶性,然后通过计算导函数在特殊点的导函数值正负来判断相应结果.【详解】因为定义域关于原点对称且,所以是偶函数,排除A、C;又因为,所以,所以时对应的切线斜率大于零,所以排除D,故选:B.【点睛】本题考查函数图象的辨别,难度一般.辨别函数图象一般可通过奇偶性、单调性、特殊点位置、导数值正负对应的切线斜率变化等来判断.7.如图,长方体中,,点分别是的中点,则异面直线与所成角的余弦值是A.B.C.D.【答案】D【解析】【分析】以所在直线为轴,建立空间直角坐标系,可得和的坐标,进而可得,从而可得结论.【详解】以所在直线为轴,建立空间直角坐标系,则可得,,设异面直线与所成的角为,则,故选D.【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.8.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,,则△ABC的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】B【解析】【分析】在△ABC中,利用二倍角的余弦与正弦定理可将已知cos2,转化为cosA,整理即可判断△ABC的形状.【详解】在△ABC中,∵cos2,∴∴1+cosA1,即cosA,∴cosAsinC=sinB=sin(A+C)=sinAcosC+cosAsinC,∴sinAcosC=0,∵sinA≠0,∴cosC=0,∴C直角.故选:B.【点睛】本题考查三角形的形状判断,着重考查二倍角的余弦与正弦定理,诱导公式的综合运用,属于中档题.9.若函数有两个不同的极值点,则实数的取值范围是()A.B.C.D.【答案】D【解析】【分析】求出函数的导数,结合二次函数的性质得到关于a的不等式组,解出即可.【详解】的定义域是(0,+∞),,若函数有两个不同的极值点,则在(0,+∞)由2个不同的实数根,故,解得:,故选:D.【点睛】本题考查了函数的极值问题,考查导数的应用以及二次函数的性质,是一道中档题.10.如图,在中,已知,,,,则A.-45B.13C.-13D.-37【答案】D【解析】【分析】先用和表示出再根据,用用和表示出,再根据求出的值,最后将的值代入,从而得出答案.【详解】∵,∴整理可得:,∴,∴故选:D.【点睛】本题考查了平面向量数量积的运算,注意运用平面向量的基本定理,以及向量的数量积的性质,考查了运算能力