预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共15页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016-2017学年福建省泉州市南安一中高三(上)期初数学试卷(文科)一.选择题:(本大题共12小题,每小题5分,满分60分)1.若全集U={﹣1,0,1,2},P={x∈Z|x2<2},则∁UP=()A.{2}B.{0,2}C.{﹣1,2}D.{﹣1,0,2}2.特称命题“∃x∈R,使x2+1<0”的否定可以写成()A.若x∉R,则x2+1≥0B.∃x∉R,x2+1≥0C.∀x∈R,x2+1<0D.∀x∈R,x2+1≥03.已知条件p:x2+x﹣2>0,条件q:x>a,若q是p的充分不必要条件,则a的取值范围可以是()A.a≥1B.a≤1C.a≥﹣1D.a≤﹣34.已知函数f(x)=,则=()A.B.C.9D.﹣95.下列式子中成立的是()A.log0.44<log0.46B.1.013.4>1.013.5C.3.50.3<3.40.3D.log76<log676.设f(x)=ex+x﹣4,则函数f(x)的零点所在区间为()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)7.函数y=(x2﹣5x+6)的单调减区间为()A.(,+∞)B.(3,+∞)C.(﹣∞,)D.(﹣∞,2)8.设a=()0.1,b=lg(sin2),c=log32,则a,b,c的大小关系是()A.a>b>cB.a>c>bC.b>a>cD.b>c>a9.已知函数f(x)=若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是()A.(0,1)B.(1,+∞)C.(﹣1,0)D.(﹣∞,﹣1)10.已知函数f(x)=x2﹣,则函数y=f(x)的大致图象是()A.B.C.D.11.已知函数f(x)的定义域为R,其导函数f′(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的是()①f(x)<0恒成立;②(x1﹣x2)[f(x1)﹣f(x2)]<0;③(x1﹣x2)[f(x1)﹣f(x2)]>0;④;⑤.A.①③B.①③④C.②④D.②⑤12.已知f(x)为定义在(0,+∞)上的可导函数,且f(x)>xf′(x)恒成立,则不等式x2f()﹣f(x)>0的解集为()A.(0,1)B.(1,2)C.(1,+∞)D.(2,+∞)二.填空题:(本大题共4小题,每小题5分,满分20分)13.函数f(x)=的定义域是.14.已知函数f(x)=,若f(f(0))=4a,则实数a=.15.已知函数f(x)=x3﹣ax2+3x在x∈[1,+∞)上是增函数,求实数a的取值范围.16.设f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f(x)>0成立的x的取值范围是.三.解答题:(本大题共6小题,满分70分,解答时应写出文字说明、证明过程或演算步骤)17.已知集合A={x|>1,x∈R},B={x|x2﹣2x﹣m<0}.(Ⅰ)当m=3时,求;A∩(∁RB);(Ⅱ)若A∩B={x|﹣1<x<4},求实数m的值.18.设p:实数x满足x2﹣4ax+3a2<0,q:实数x满足|x﹣3|<1.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若其中a>0且¬p是¬q的充分不必要条件,求实数a的取值范围.19.求函数f(x)=﹣4x+4在[0,3]上的最大值与最小值.20.已知函数f(x)=lnx﹣ax+(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数y=f(x)在定义域内存在两个极值点,求a的取值范围.21.设函数f(x)=x2ex.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.22.已知函数f(x)=ax2﹣2lnx.(Ⅰ)若f(x)在x=e处取得极值,求a的值;(Ⅱ)若x∈(0,e],求f(x)的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.2016-2017学年福建省泉州市南安一中高三(上)期初数学试卷(文科)参考答案与试题解析一.选择题:(本大题共12小题,每小题5分,满分60分)1.若全集U={﹣1,0,1,2},P={x∈Z|x2<2},则∁UP=()A.{2}B.{0,2}C.{﹣1,2}D.{﹣1,0,2}【考点】补集及其运算.【分析】先解出集合P,然后根据补集的定义得出答案.【解答】解:∵x2<2∴﹣<x<∴P={x∈Z|x2<2}={x|﹣<x<,x∈Z|}={﹣1,0,1},又∵全集U={﹣1,0,1,2},∴∁UP={2}故选:A.2.特称命题“∃x∈R,使x2+1<0”的否定可以写成()A.若x∉R,则x2+1≥0B.∃x∉R,x2+1≥0C.∀x∈R,x2+1<0D.∀x