预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016年甘肃省张掖市高台一中高考数学三诊试卷(理科)一、选择题(本大题共12小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={﹣1,0,1},N={x|x=2a,a∈M},则集合M∩N=()A.{0}B.{0,﹣2}C.{﹣2,0,2}D.{0,2}2.复数z为纯虚数,若(3﹣i)•z=a+i(i为虚数单位),则实数a的值为()A.﹣B.3C.﹣3D.3.设双曲线=1(a>0,b>0)的渐近线方程为y=x,则该双曲线的离心率为()A.B.2C.D.4.如图所示的程序框图,若输入的x值为0,则输出的y值为()A.B.0C.1D.或05.已知条件p:|x+1|≤2,条件q:x≤a,且p是q的充分不必要条件,则a的取值范围是()A.a≥1B.a≤1C.a≥﹣1D.a≤﹣36.边长为2的正方形ABCD的定点都在同一球面上,球心到平面ABCD的距离为1,则此球的表面积为()A.3πB.5πC.12πD.20π7.双曲线﹣=1(a>0,b>0)的一条渐近线被圆M:(x﹣8)2+y2=25截得的弦长为6,则双曲线的离心率为()A.2B.C.4D.8.已知函数f(x)=ex+x,g(x)=lnx+x,h(x)=x﹣的零点依次为a,b,c,则()A.c<b<aB.a<b<cC.c<a<bD.b<a<c9.已知实数x,y满足约束条件,若y≥kx﹣3恒成立,则实数k的数值范围是()A.[﹣,0]B.[0,]C.(﹣∞,0]∪[,+∞)D.(﹣∞,﹣]∪[0,+∞)10.若三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为()A.64πB.16πC.12πD.4π11.如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为()A.B.9C.D.﹣912.执行如图所示的一个程序框图,若f(x)在[﹣1,a]上的值域为[0,2],则实数a的取值范围是()A.(0,1]B.[1,]C.[1,2]D.[,2]二、填空题:本大题共4小题,每小题5分.13.已知(2x﹣)n展开式的二项式系数之和为64,则其展开式中常数项是.14.设不等式组表示的平面区域为M,若直线l:y=k(x+2)上存在区域M内的点,则k的取值范围是.15.设椭圆E:+=1(a>b>0)的右顶点为A、右焦点为F,B为椭圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC,则椭圆E的离心率是.16.已知f(x)=,若不等式f(x﹣2)≥f(x)对一切x∈R恒成立,则a的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1,等差数列{bn}满足b3=3,b5=9,(1)分别求数列{an},{bn}的通项公式;(2)若对任意的n∈N*,恒成立,求实数k的取值范围.18.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会这三个环节(可参加多个,也可都不参加)的情况及其概率如表所示:参加纪念活动的环节数0123概率(Ⅰ)若从抗战老兵中随机抽取2人进行座谈,求这2人参加纪念活动的环节数不同的概率;(Ⅱ)某医疗部门决定从这些抗战老兵中(其中参加纪念活动的环节数为3的抗战老兵数大于等于3)随机抽取3名进行体检,设随机抽取的这3名抗战老兵中参加三个环节的有ξ名,求ξ的分布列和数学期望.19.如图所示,在菱形ABCD中,对角线AC,BD交于E点,F,G分别为AD,BC的中点,AB=2,∠DAB=60°,沿对角线BD将△ABD折起,使得AC=.(1)求证:平面ABD⊥平面BCD;(2)求二面角F﹣DG﹣C的余弦值.20.在平面直角坐标系xOy中,F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,B为短轴的一个端点,E是椭圆C上的一点,满足,且△EF1F2的周长为.(1)求椭圆C的方程;(2)设点M是线段OF2上的一点,过点F2且与x轴不垂直的直线l交椭圆C于P、Q两点,若△MPQ是以M为顶点的等腰三角形,求点M到直线l距离的取值范围.21.设函数f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.(Ⅰ)求函数f(x),g(x)的解析式;(Ⅱ)求函数f(x)在[t,t+1](t>﹣3)上的最小值;(Ⅲ)若对∀x≥﹣2,kf(x)≥g(x)恒成立,求实数k的取值范围.请考生从第22、23、24三题中任选一题作答.注意:只能做所选的题目.如果多做,