预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

文科数学试卷满分:150分注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。4.考试结束后,将本试卷和答题卡一并交回。第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则()A.B.C.D.2.已知复数,则()A.B.C.D.3.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知在平面直角坐标系中,为坐标原点,,,若平面内点满足,则的最大值为()A.7B.6C.5D.45.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是()A.至少有一个样本点落在回归直线上B.若所有样本点都在回归直线上,则变量同的相关系数为1C.对所有解释变量(),的值一定与有误差D.若回归直线的斜率,则变量x与y正相关6.在三角形中,已知,,,,则A.B.C.D.7.函数的图象大致为()第8题图A.B.C.D.8.某圆锥的三视图如图,是边长为的等边三角形,为的中点,三视图中的点分别对应圆锥中的点,则在圆锥侧面展开图中之间的距离为A.B.C.D.9.运行如图所示的程序框图,设输出的数据构成集合,从集合中任取一个元素,则函数在上是增函数的概率为()A.B.C.D.10.十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龙)、巳(蛇)、午(马)、未(羊)、申(猴)、酉(鸡)、戌(狗)、亥(猪),每一个人的出生年份对应了十二种动物中的一种,即自己的属相.现有印着六种不同生肖图案(包含马、羊)的毛绒娃娃各一个,小张同学的属相为马,小李同学的属相为羊,现在这两位同学从这六个毛绒娃娃中各随机取一个(不放回),则这两位同学都拿到自己属相的毛绒娃娃的概率是()A.B.C.D.11.已知以圆的圆心为焦点的抛物线与圆在第一象限交于点,点是抛物线:上任意一点,与直线垂直,垂足为,则的最大值为()A.1B.2C.D.812.已知函数,的最小值为3,若存在,使得,则正整数的最大值为()A.2B.3C.4D.5第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13、在等差数列中,若,,则__________14、已知函数与的图像上存在关于原点的对称点,则实数的取值范围是__________.15.在中,角,,所对的边分别为,,,若,,,则=______.16.球的球面上有四点、、、,其中、、、四点共面,是边长为的正三角形,平面平面,则棱锥体积的最大值为三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)设数列的前n项和为,已知,,.(1)证明:为等比数列,求出的通项公式;(2)若,求的前n项和,并判断是否存在正整数n使得成立?若存在求出所有n值;若不存在说明理由.18.(本小题满分12分)如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.19.(本小题满分12分)已知抛物线的焦点为,抛物线上的点到准线的最小距离为.(1)求抛物线的方程;(2)若过点作互相垂直的两条直线、,与抛物线交于、两点,与抛物线交于、两点,、分别为弦、的中点,求的最小值.20.(本小题满分12分)随着共享单车的成功运营,更多的共享产品逐步走人大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷,某公司随机抽取1000人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的1000人中的性别以及意见进行了分类,得到的数据如下表所示:男女总计认为共享产品对生活有益认为共享产品对生活无益总计(1)求出表格中的值,并根据表中的数据,判断能否在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系?(2)现按照分层抽样从认为共享产品对生活无益的人员中随机抽取6人,再从6人中随机抽取2人赠送超市购物券作为答谢,求恰有1人是女性的概率.参考公式:.21.(本小题满分12分)已知且,函数,,其中为自然对数的底数.(1)试讨论函数的单调性;(2)若对任意的,恒成立,求的取值范围.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),以该直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方