预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2015-2016学年江苏省泰州中学高三(上)期中数学试卷一.填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B=.2.sin20°cos10°+cos20°sin10°=.3.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要)4.方程log2(3x+2)=1+log2(x+2)的解为.5.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则a6的值等于.6.曲线y=2x﹣lnx在点(1,2)处的切线方程是.7.设函数,则f(f(﹣1))的值是.8.设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于.9.已知sin(α﹣45°)=﹣,且0°<α<90°,则cos2α的值为.10.已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为.11.已知方程x3﹣ax+2=0(a为实数)有且仅有一个实根,则a的取值范围是.12.已知数列{an}满足an+1=qan+2q﹣2(q为常数),若a3,a4,a5∈{﹣5,﹣2,﹣1,7},则a1=.13.已知平行四边形ABCD中,AB=2,AD=1,∠DAB=60°,点E,F分别在线段BC,DC上运动,设,则的最小值是.14.已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是.二、解答题:本大题共10小题,共计90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.如图已知四边形AOCB中,||=5,=(5,0),点B位于第一象限,若△BOC为正三角形.(1)若cos∠AOB=,求A点坐标;(2)记向量与的夹角为θ,求cos2θ的值.16.在等比数列{an}中,a1=1,且a2是a1与a3﹣1的等差中项.(1)求数列{an}的通项公式;(2)若数列{bn}满足.求数列{bn}的前n项和.17.如图,某市若规划一居民小区ABCD,AD=2千米,AB=1千米,∠A=90°,政府决定从该地块中划出一个直角三角形地块AEF建活动休闲区(点E,F分别在线段AB,AD上),且该直角三角形AEF的周长为1千米,△AEF的面积为S.(1)①设AE=x,求S关于x的函数关系式;②设∠AEF=θ,求S关于θ的函数关系式;(2)试确定点E的位置,使得直角三角形地块AEF的面积S最大,并求出S的最大值.18.设函数f(x)=,(a>0,b∈R)(1)当x≠0时,求证:f(x)=f();(2)若函数y=f(x),x∈[,2]的值域为[5,6],求f(x);(3)在(2)条件下,讨论函数g(x)=f(2x)﹣k(k∈R)的零点个数.19.设数列{an},{bn},{cn}满足a1=a,b1=1,c1=3,对于任意n∈N*,有bn+1=,cn+1=.(1)求数列{cn﹣bn}的通项公式;(2)若数列{an}和{bn+cn}都是常数项,求实数a的值;(3)若数列{an}是公比为a的等比数列,记数列{bn}和{cn}的前n项和分别为Sn和Tn,记Mn=2Sn+1﹣Tn,求Mn<对任意n∈N*恒成立的a的取值范围.20.设f(x)=x2lnx,g(x)=ax3﹣x2.(1)求函数f(x)的最小值;(2)若存在x∈(0,+∞),使f(x)>g(x),求实数a的取值范围;(3)若使方程f(x)﹣g(x)=0在x∈[e,en](其中e=2.7…为自然对数的底数)上有解的最小a的值为an,数列{an}的前n项和为Sn,求证:Sn<3.21.设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换,(1)求M﹣1;(2)求直线4x﹣9y=1在M2的作用下的新曲线的方程.22.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系;(1)设M(x,y)是圆C上的动点,求m=3x+4y的取值范围;(2)求圆C的极坐标方程.23.班上有四位同学申请A,B,C三所大学的自主招生,若每位同学只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1)求恰有2人申请A大学或B大学的概率;(2)求申请C大学的人数X的分布列与数学期望E(X).24.已知数列{an}满足,记数列{an}的前n项和为Sn,cn=Sn﹣2n+2ln(n+1)(1)令,证明:对任意正整数n,|sin(bnθ)|≤bn|sinθ|(2)证明数列{cn}是递减数列.2015-2016学年江