预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017年江苏省南通市如皋市高考数学一模试卷一、填空题(共14小题,每小题5分,满分70分)1.设全集U={x|x≥3,x∈N},集合A={x|x2≥10,x∈N},则∁UA=.2.复数z=(i为虚数单位)的共轭复数是.3.抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),则事件“向上的数字为奇数或向上的数字大于4”发生的概率为.4.如图所示的流程图,当输入n的值为10时,则输出的S的值为.5.已知等差数列{an}的前11项的和为55,a10=9,则a14=.6.若点(x,y)位于曲线y=|2x﹣1|与y=3所围成的封闭区域内(包含边界),则2x﹣y的最小值为.7.已知棱长为1的正方体ABCD﹣A1B1C1D1中,M是棱CC1的中点,则三棱锥A1﹣ABM的体积为.8.已知圆C过点(2,),且与直线x﹣y+3=0相切于点(0,),则圆C的方程为.9.已知F1、F2分别是双曲线﹣=1的左、右焦点,过F2作x轴的垂线与双曲线交于A、B两点,G是△ABF1的重心,且•=0,则双曲线的离心率为.10.已知三角形ABC是单位圆的内接三角形,AB=AC=1,过点A作BC的垂线交单位圆于点D,则•=.11.已知函数f(x)=,则不等式f(x2﹣2)+f(x)<0的解集为.12.将函数f(x)=2cos2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象,若对满足|f(x1)﹣g(x2)|=4的x1、x2,有|x1﹣x2|min=,则φ=.13.已知函数f(x)=(x﹣1)ex﹣ax2,若y=f(cosx)在x∈[0,π]上有且仅有两个不同的零点,则实数a的取值范围为.14.设实数x、y满足4x2﹣2xy+4y2=13,则x2+4y2的取值范围是.二、解答题(共6小题,满分90分)15.(14分)如图,直三棱柱ABC﹣A1B1C1中,AA1=AB,AB⊥BC,且N是A1B的中点.(1)求证:直线AN⊥平面A1BC;(2)若M在线段BC1上,且MN∥平面A1B1C1,求证:M是BC1的中点.16.(14分)在△ABC中,已知cosC+(cosA﹣sinA)cosB=0.(1)求角B的大小;(2)若sin(A﹣)=,求sin2C.17.(15分)如图,矩形公园OABC中,OA=2km,OC=1km,公园的左下角阴影部分为以O为圆心,半径为1km的圆面的人工湖,现计划修建一条与圆相切的观光道路EF(点E、F分别在边OA与BC上),D为切点.(1)试求观光道路EF长度的最大值;(2)公园计划在道路EF右侧种植草坪,试求草坪ABFE面积S的最大值.18.(15分)如图,已知F为椭圆+=1的左焦点,过点F且互相垂直的两条直线分别交椭圆于A、B及C、D.(1)求证:+为定值;(2)若直线CD交直线l:x=﹣于点P,试探究四边形OAPB能否为平行四边形,并说明理由.19.(16分)已知函数f(x)=lnx,g(x)=(a∈R).(1)若a=2,求证:f(x)>g(x)在(1,+∞)恒成立;(2)讨论h(x)=f(x)﹣g(x)的单调性;(3)求证:当x>0时,f(x+1)>.20.(16分)已知数列{an}的通项公式为an=2n﹣(﹣1)n,n∈N*.(1)在数列{an}中,是否存在连续3项成等差数列?若存在,求出所有符合条件的项,若不存在,说明理由;(2)试证在数列{an}中,一定存在满足条件1<r<s的正整数r、s,使得a1、ar、as成等差数列;并求出正整数r、s之间的关系;(3)在数列{an}中是否存在某4项成等差数列?若存在,求出所有满足条件的项;若不存在,说明理由.附加题21.(10分)已知a、b是实数,矩阵M=所对应的变换T将点(2,2)变成了点P′(﹣1,+1).(1)求实数a、b的值;(2)求矩阵M的逆矩阵N.22.(10分)已知曲线C1的极坐标方程为ρ2﹣4ρcosθ﹣4=0,曲线C2和曲线C1关于直线θ=对称,求曲线C2的极坐标方程.23.(10分)甲、乙、丙三名同学参加歌唱、围棋、舞蹈、阅读、游泳5个课外活动,每个同学彼此独立地选择参加3个活动,其中甲同学喜欢唱歌但不喜欢下棋,所以必选歌唱,不选围棋,另在舞蹈、阅读、游泳中随机选2个,同学乙和丙从5个课外活动中任选3个.(1)求甲同学选中舞蹈且乙、丙两名同学未选中舞蹈的概率;(2)设X表示参加舞蹈的同学人数,求X的分布列及数学期望.24.(10分)已知集合A={a1,a2,…an}(n∈N*),规定:若集合A1∪A2∪…∪Am=A(m≥2,m∈N*),则称{A1,A2,…,Am}为集合A的一个分拆,当且仅当:A1=B1,A2=B2,…Am=Bm时,{A1,A2,…,Am}与{B1,B2,…,Bm}为同一分拆,所有不同的分拆种数记为fn(m).例如:当n=1,m=2时,