预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

汕尾市2020-2021学年高二上学期期末学业质量监测数学试题一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()2.若,则“”是“方程表示椭圆”的()充要条件既不充分也不必要条件充分不必要条件必要不充分条件3.已知,且为第四象限角,则=()A.B.C.D.4.已知直线和直线互相平行,则实数的取值为()A.或3B.C.1或D.5.已知向量则()46.已知等差数列的公差为2,为其前项和,若,则=()7.双曲线()的一条渐近线方程为,且与椭圆有公共焦点,则的方程为()A.B.C.D.8.已知,若关于的不等式在上恒成立,则的最小值为()A.1B.2C.4D.8选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分.9.命题:“,”,命题:“,”,则下列命题为真命题的是()A.B.C.D.10.下列函数中,既是偶函数又在区间单调递增的是()A.B.C.D.对某公路汽车行驶速度抽出了一个容量为n的样本进行调查,画出如下频率分布直方图.若样本中车速在(单位:km/h)有45辆,则下列说法正确的是()A.样本中车速在(单位:km/h)的频率为0.04B.样本中车速超过80km/h的车辆数为105C.根据直方图估计该样本的众数为77.5D.根据直方图估计该样本的中位数为7712如图,在棱长为2的平行六面体中,,点分别是的中点,对角线与平面交于点,下列说法正确的是()直线和直线所成角的余弦值等于三棱锥的体积是平行四六面体的体积的三、填空题:本题共4小题,每小题5分,共20分.13.某校有学生2000人,其中高三学生600人,现采用分层抽样的方法抽取一个100人的样本,则样本中高三学生的人数为_________.已知函数的部分图象如图所示,则函数的解析式为:15.若四点在球的表面上,,,,则球的表面积为16.已知椭圆的左右焦点分别为F1,F2,若以F2为圆心,为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且|PT|的最大值不超过,则椭圆的离心率的取值范围是四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤.17.(满分10分)在①acosB=bsinA,②asin2B=bsinA,这两个条件中任选一个,补充在下面问题中,并解答.在△ABC中,b=2,(1)求∠B;(2)若c=2a,求△ABC的面积.备注:如果选择多个条件分别解答,以第一个解答计分。18.(满分12分)设等差数列的前项和为,且满足=2,.首项为1的等比数列满足且成等差数列.(1)求的通项公式;(2)设,求数列的前项和.19.(满分12分)抛物线的焦点为,点在抛物线上,且=3.(1)求抛物线的方程;(2)设直线经过点且与抛物线C相交于两点.若线段的中点在直线上,求直线的方程.20.(满分12分)如图,在四棱锥中,底面,是直角梯形,,,,点E是的中点.(1)证明:平面平面;.21.(满分12分)2020年1月至5月百货公司某商品的销量(万件)与利润(万元)的统计数据如下表:月份12345销量(万件)711131215利润(万元)1425302635从这5个月中任选两个月,记利润分别为万元,万元,求事件“都小于30”的概率;从这5个月中任选两个月,若选取的是1月和5月这两组数据,请根据这5个月中另3个月的数据,求出关于的线性回归方程;若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过0.5万元,则认为得到的线性回归方程是可靠的,试问(2)所得到的线性回归方程是否可靠?参考公式:,(满分12分)折纸又称“工艺折纸”,是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长.某些折纸活动蕴含丰富的数学内容,例如:用圆形纸片,按如下步骤折纸,可折出一个椭圆.步骤1:设圆心是F,在圆内不是圆心处取一点,标记为E;步骤2:把纸片对折,使圆周正好通过点E,此时圆周上与点E重合的点标记为G;步骤3:把纸片展开,于是就留下一条折痕,此时GF与折痕交于点P;步骤4:不断重复步骤2和3,能得到越来越多条的折痕和越来越多的交点P,所有交点P组成的图形便是一个椭圆.现已知圆形纸片的半径为4,定点E到圆心F的距离为2,为EF中点,所有交点P组成的椭圆记为.(1)以EF所在的直线为x轴,以O为原点建立平面直角坐标系,求椭圆的标准方程;(2)设直线与椭圆交于,两点,且,试问点到直线的距离是否为定值?如果是定值,则求该定值;如果不是定值,则说明理由.2020—2021学年度第一学期教学质量监测高二数学参考答案及评分标准一、单选题12345678CDBDADAC二、多选题9101112ACBDBCABC填空题13.3014.15.