预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

广东省广州市2015届高考数学二模试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)sin240°的值为()A.B.C.﹣D.﹣2.(5分)已知函数f(x)=3x(x∈R)的反函数为g(x),则g()=()A.﹣log32B.log32C.﹣log23D.log233.(5分)已知双曲线C:﹣=1经过点(4,3),则双曲线C的离心率为()A.B.C.D.4.(5分)执行如图所示的程序框图,则输出的z的值是()A.21B.32C.34D.645.(5分)已知命题p:∀x∈R,x2>0,命题q:∃α,β∈R,使tan(α+β)=tanα+tanβ,则下列命题为真命题的是()A.p∧qB.p∨(¬q)C.(¬p)∧qD.p∧(¬q)6.(5分)设集合A={x|a﹣2<x<a+2},B={x|x2﹣4x﹣5<0},若A⊆B,则实数a的取值范围为()A.[1,3]B.(1,3)C.[﹣3,﹣1]D.(﹣3,﹣1)7.(5分)已知数列{an}满足a1=3,且an+1=4an+3(n∈N*),则数列{an}的通项公式为()A.22n﹣1+1B.22n﹣1﹣1C.22n+1D.22n﹣18.(5分)已知函数f(x)=﹣x2+2x+3,若在区间[﹣4,4]上任取一个实数x0,则使f(x0)≥0成立的概率为()A.B.C.D.19.(5分)如图,圆锥的底面直径AB=2,母线长VA=3,点C在母线长VB上,且VC=1,有一只蚂蚁沿圆锥的侧面从点A到点C,则这只蚂蚁爬行的最短距离是()A.B.C.D.10.(5分)设函数f(x)=x3+3ax2+3bx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2],则点(a,b)在aOb平面上所构成区域的面积为()A.B.C.D.1二、填空题:本大题共3小题,考生作答4小题,每小题5分,满分15分.(一)必做题(11~13题)11.(5分)已知i为虚数单位,复数z=,则|z|=.12.(5分)已知向量=(x,1),=(2,y),若+=(1,﹣1),则x+y=.13.(5分)某种型号的汽车紧急刹车后滑行的距离y(km)与刹车时的速度x(km/h)的关系可以用y=ax2来描述,已知这种型号的汽车在速度为60km/h时,紧急刹车后滑行的距离为b(km).一辆这种型号的汽车紧急刹车后滑行的距离为3b(km),则这辆车的行驶速度为km/h.(二)选做题(14~15题,考生只能从中选做一题)(几何证明选讲选做题)14.(5分)如图,在平行四边形ABCD中,AB=4,点E为边DC的中点,AE与BC的延长线交于点F,且AE平分∠BAD,作DG⊥AE,垂足为G,若DG=1,则AF的长为.(坐标系与参数方程选做题)15.在平面直角坐标系中,已知曲线C1和C2的方程分别为(t为参数)和(t为参数),则曲线C1和C2的交点有个.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知△ABC的三边a,b,c所对的角分别为A,B,C,且a:b:c=7:5:3.(1)求cosA的值;(2)若△ABC外接圆的半径为14,求△ABC的面积.17.(12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了100份,统计结果如图表所示.年龄分组抽取份数答对全卷的人数答对全卷的人数占本组的概率[20,30)40280.7[30,40)n270.9[40,50)104b[50,60]20a0.1(1)分别求出n,a,b,c的值;(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60]的人中至少有1人被授予“环保之星”的概率.18.(14分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM=AN=1.(1)证明:M,N,C,D1四点共面;(2)平面MNCD1将此正方体分为两部分,求这两部分的体积之比.19.(14分)已知点Pn(an,bn)(n∈N*)在直线l:y=3x+1上,P1是直线l与y轴的交点,数列{an}是公差为1的等差数列.(1)求数列{an},{bn}的通项公式;(2)若f(n)=是否存在k∈N*,使f(k+3)=4f(k)成立?若存在,求出所有符合条件的k值;若不存在,请说明理由.20.(14分)已知函数f(x)=lnx+ax2+x(a∈R).(1)若函数f(x)在x=1处的切线平行于x轴,求实数a的值,并求此时函数f(x)的极值;(2)求函数f(x)的单调区间.21.(14分)已知圆心在x轴上的圆C过点(0,0)和(﹣1,1),圆D的方程为(x