预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2015-2016学年山西省临汾市曲沃中学高二(上)期中数学试卷(理科)一、选择题(每小题5分,共60分)1.设集合A={x|x﹣2>0},B={x|x2﹣2x>0},则“x∈A”是“x∈B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.双曲线的焦距为()A.3B.4C.3D.43.抛物线y=的准线方程为()A.x=﹣1B.x=﹣C.y=﹣1D.y=﹣4.命题“对任意的x∈R,x3﹣x2+1≤0”的否定是()A.不存在x∈R,x3﹣x2+1≤0B.存在x∈R,x3﹣x2+1≤0C.存在x∈R,x3﹣x2+1>0D.对任意的x∈R,x3﹣x2+1>05.双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4C.4D.6.已知动圆圆心在抛物线y2=4x上,且动圆恒与直线x=﹣1相切,则此动圆必过定点()A.(2,0)B.(1,0)C.(0,1)D.(0,﹣1)7.与椭圆共焦点且过点P(2,1)的双曲线方程是()A.B.C.D.8.AB是抛物线y2=2x的一条焦点弦,|AB|=4,则AB中点C的横坐标是()A.2B.C.D.9.椭圆的短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率e为()A.B.C.D.10.椭圆mx2+ny2=1与直线x+y﹣1=0相交于A,B两点,过AB中点M与坐标原点的直线的斜率为,则的值为()A.B.C.1D.211.设e1.e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足•=0,则+的值为()A.B.1C.2D.412.双曲线的虚轴长为4,离心率e=分别是它的左右焦点,若过F1的直线与双曲线的左支交与A、B两点,且|AB|是|AF1|,|AF2|的等差中项,则|BF1|等于()A.B.C.D.8二、填空题(共4小题,每小题5分,满分20分)13.若双曲线经过点,且其渐近线方程为y=±x,则此双曲线的标准方程.14.已知抛物线y2=4px(p>0)与双曲线﹣=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为.15.点P在椭圆+=1上,点P到直线3x﹣4y=24的最大距离和最小距离为.16.已知直线y=a交抛物线y=x2于A,B两点,若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为.三、解答题:(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.已知:命题p:方程表示焦点在y轴上的椭圆.命题q:双曲线的离心率e∈(2,3).若p∨q为真,p∧q为假,求实数m的取值范围.18.已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.(1)若|AF|=4,求点A的坐标;(2)求线段AB的长的最小值.19.已知双曲线=1(a>0,b>0)的虚轴长为2,离心率为,F1,F2为双曲线的两个焦点.(1)求双曲线的方程;(2)若双曲线上有一点P,满足∠F1PF2=60°,求△F1PF2的面积.20.平面内动点P(x,y)与两定点A(﹣2,0),b(2,0)连线的斜率之积等于﹣,若点P的轨迹为曲线E,过点Q(﹣1,0)作斜率不为零的直线CD交曲线E于点C,D(1)求曲线E的方程;(2)求证:AC⊥AD.21.如图,倾斜角为α的直线经过抛物线y2=8x的焦点F,且与抛物线交于A、B两点.(1)求抛物线的焦点F的坐标及准线l的方程;(2)若α为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|﹣|FP|cos2α为定值,并求此定值.22.(文科)点M是圆x2+y2=4上的一个动点,过点M作MD垂直于x轴,垂足为D,P为线段MD的中点.(1)求点P的轨迹方程;(2)设点P的轨迹为C,若直线l:y=﹣ex+m(其中e为曲线C的离心率)与曲线C有两个不同的交点A与B且(其中O为坐标原点),求m的值.2015-2016学年山西省临汾市曲沃中学高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.设集合A={x|x﹣2>0},B={x|x2﹣2x>0},则“x∈A”是“x∈B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】探究型.【分析】先化简集合B,利用充分条件和必要条件的定义进行判断.【解答】解:∵A={x|x﹣2>0}={x|x>2},B={x|x2﹣2x>0}={x|x>2或x<0},∴“x∈A”是“x∈B”的充分不必要条件.故选A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式之间的关系进行判断即可.2.双曲线的焦距为()A.3B.4C.3D.4【考点】双曲线的简单性质.【专题】计算题.【分析】本题比较简明,需要