预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高二数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时间120分钟,共150分.第Ⅰ卷选择题(共60分)注意事项:每小题选出答案后,用铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知复数是纯虚数,,则()A.B.C.D.【答案】B【解析】【分析】根据纯虚数定义,可求得的值;代入后可得复数,再根据复数的除法运算即可求得的值.【详解】复数是纯虚数,则,解得,所以,则,故选:B.【点睛】本题考查了复数的概念,复数的除法运算,属于基础题.2.已知,则()A.B.C.D.【答案】C【解析】【分析】利用换元法求得函数的解析式,再根据导数的除法运算法则即可求解.【详解】函数,令,则,所以,则,由导数除法运算法则可得,故选:C.【点睛】本题考查了换元法求函数解析式,导数除法法则的简单计算,属于基础题.3.某单位为了解用电量(度)与气温(℃)之间的关系,随机统计了某天的用电量与当天气温,并制作了统计表:由表中数据得到线性回归方程,那么表中的值为()气温(℃)181310-1用电量(度)243464A.B.C.D.【答案】C【解析】【分析】由表中数据计算可得样本中心点,根据回归方程经过样本中心点,代入即可求得的值.【详解】由表格可知,,根据回归直线经过样本中心点,代入回归方程可得,解得,故选:C.【点睛】本题考查了线性回归方程的简单应用,由回归方程求数据中的参数,属于基础题.4.给出下列四个命题:①若,则;②若,且,则;③若复数满足,则;④若,则在复平面内对应的点位于第一象限.其中正确的命题个数为()A.B.C.D.【答案】B【解析】【分析】根据复数的乘方运算,结合特殊值即可判断①;由复数性质,不能比较大小可判断②;根据复数的除法运算及模的求法,可判断③;由复数的乘法运算及复数的几何意义可判断④.【详解】对于①,若,则错误,如当时,所以①错误;对于②,虚数不能比较大小,所以②错误;对于③,复数满足,即,所以,即③正确;对于④,若,则,所以,在复平面内对应点的坐标为,所以④正确;综上可知,正确的为③④,故选:B.【点睛】本题考查了复数的几何意义与运算的综合应用,属于基础题.5.已知函数,则()A.B.C.D.【答案】A【解析】【分析】根据分段函数解析式,结合指数幂与对数的运算,即可化简求解.【详解】函数则,所以,故选:A.【点睛】本题考查了分段函数的求值,指数幂与对数式的运算应用,属于基础题.6.若展开式中只有第四项的系数最大,则展开式中有理项的项数为()A.B.C.D.【答案】D【解析】【分析】根据最大项系数可得的值,结合二项定理展开式的通项,即可得有理项及有理项的个数.【详解】展开式中只有第四项的系数最大,所以,则展开式通项为,因为,所以当时为有理项,所以有理项共有4项,故选:D.【点睛】本题考查了二项定理展开式系数的性质,二项定理展开式通项的应用,有理项的求法,属于基础题.7.如图所示,圆为正三角形的内切圆,为切点,将一颗豆子随机地扔到该正三角形内,在已知豆子落在圆内的条件下,豆子落在(阴影部分)内的概率为()A.B.C.D.【答案】A【解析】【分析】设正三角形的边长为,内切圆半径为,求得内切圆半径,即可得阴影部分的面积;再求得三角形的面积,结合几何概型的求法即可得解.【详解】设正三角形的边长为,内切圆半径为,则由三角形面积公式可得,解得,则,所以由几何概型概率可得落在阴影部分的概率为,故选:A.【点睛】本题考查了等边三角形内切圆的性质应用,几何概型概率求法,属于基础题.8.在的展开式中,记项的系数为,则()A.B.C.D.【答案】C【解析】【分析】根据题意,表示出展开式的项对应次数,由二项式定理展开式的性质即可求得各项对应的系数,即可求解.【详解】由题意记项的系数为,可知对应的项为;对应的项为;对应的项为;对应的项为;而展开式中项的系数为;对应的项的系数为;对应的项的系数为;对应的项的系数为;所以,故选:C.【点睛】本题考查了二项式定理展开式及性质的简单应用,属于基础题.9.已知定义在上的函数与函数有相同的奇偶性和单调性,则不等式的解集为()A.B.C.D.【答案】D【解析】【分析】先判断的奇偶性及单调性,即可由为奇函数性质及单调性解不等式,结合定义域即可求解.【详解】函数,定义域为;则,即为奇函数,,函数在内单调递减,由复合函数的单调性可知在内单调递减,由题意可得函数为在内单调递减的奇函数,所以不等式变形可得,即,则,解不等式组可得,即,故选:D.【点睛】本题考查了函数奇偶性及单调性的判断,对数型复合函数单调性性质应用,由奇偶性及单调性解抽象不等式,注意定义域的要求,属于中档