预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

天津市五区县2014-2015学年高二下学期期末数学试卷(文科)一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则等于()A.+iB.+iC.+iD.+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的基本运算法则进行计算即可.解答:解:===+i,故选:A点评:本题主要考查复数的基本运算,比较基础.2.若a,b∈R且a>b,则()A.a2>b2B.a3>b3C.D.考点:不等式的基本性质.专题:不等式的解法及应用.分析:根据不等式的基本性质,结合已知中a>b,逐一分析四个答案中的不等式是否一定成立,可得答案.解答:解:∵a,b∈R且a>b,由于a,b符号不确定,故a2与b2的大小不能确定,故A不一定成立;但a3>b3成立,故B正确;但由于a,b符号不确定,故与大小不能确定,故C不一定成立;但由于a,b符号不确定,故大小不能确定,故D不一定成立;故选:B.点评:本题考查的知识点是不等式的基本性质,熟练掌握不等式的基本性质,是解答的关键.3.若z1,z2∈R,则|z1•z2|=|z1|•|z2|,某学生由此得出结论:若z1,z2∈C,则|z1•z2|=|z1|•|z2|,该学生的推理是()A.演绎推理B.逻辑推理C.归纳推理D.类比推理考点:类比推理.专题:综合题;推理和证明.分析:由实数集中成立的结论,到复数集中的结论,是类比推理.解答:解:由实数集中成立的结论,到复数集中的结论,是类比推理,故选:D.点评:本题考查类比推理,本题解题的关键在于对类比推理的理解.4.一般地,在两个分类变量的独立性检验过程中有如下表格:P(K2≥k0)0.500.400.250.150.100.050.0250.0100.005k00.4550.7081.3232.0722.7063.8415.0246.6357.879如图是两个分类变量X,Y的2×2列联表的一部分,则可以有多大的把握说X与Y有关系()y1y2x1155x22020A.90%B.95%C.97.5%D.99%考点:独立性检验的应用.专题:计算题;概率与统计.分析:根据所给的观测值,把观测值同表格所给的临界值进行比较,看观测值大于哪一个临界值,得到说明两个变量有关系的可信程度.解答:解:∵k2=≈3.43>2.706,∴有90%的把握说X与Y有关系,故选A.点评:本题考查独立性检验,考查两个变量之间的关系的可信程度,考查临界值表的应用,本题是一个基础题,关键在于理解临界值表的意义.5.已知i是虚数单位,则1+i+i2…+i100等于()A.1﹣iB.1+iC.0D.1考点:虚数单位i及其性质.专题:数系的扩充和复数.分析:根据复数in的周期性进行求解.解答:解:∵i4n+i4n+1+i4n+2+i4n+3=0,∴1+i+i2…+i100=1+(i+i2…+i100)=1+25(i+i2+i3+i4)=1,故选:D点评:本题主要考查复数的计算,根据i4n+i4n+1+i4n+2+i4n+3=0是解决本题的关键.比较基础.6.如图,在△ABC中,E,F分别是AB,AC上的点,若EF∥BC,△AEF与四边形EFCB的面积相等,则等于()A.B.C.D.考点:平行线分线段成比例定理.专题:选作题;空间位置关系与距离.分析:利用△AEF与四边形EFCB的面积相等,可得△AEF与△ACB的面积相的比为1:2,利用三角形相似的性质,即可得出结论.解答:解:∵△AEF与四边形EFCB的面积相等,∴△AEF与△ACB的面积相的比为1:2,∵EF∥BC,∴=,故选:B.点评:本题考查了相似三角形的性质,考查学生的计算能力,比较基础.7.已知函数f(x)=2x+(x>0),则()A.x=±1时,函数f(x)的最小值为4B.x=±2时,函数f(x)的最小值为2C.x=1时,函数f(x)的最小值为4D.x=2时,函数f(x)的最小值为2考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式的性质即可得出.解答:解:∵x>0,∴f(x)≥2×=4,当且仅当x=1时取等号.∴函数f(x)的最小值为4.故选:C.点评:本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.8.如图,已知AB是半径为5的圆O的弦,过点A,B的切线交于点P,若AB=6,则PA等于()A.B.C.D.考点:与圆有关的比例线段.专题:选作题;推理和证明.分析:连接OP,交AB于C,求出OC,OP,利用勾股定理求出PA.解答:解:连接OP,交AB于C,则∵过点A,B的切线交于点P,∴OB⊥BP,OP⊥AB,∵AB=6,OB=5,∴OC=4,∵OB2=OC•OP,∴25=4OP,∴OP=,∴CP=,∴PA==,故选:C.点