预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

天津市南开区南开中学2020届高三数学下学期第一次月考试题(含解析)一、选择题(共9小题;共45分)1.已知集合,集合,则()A.B.C.D.【答案】C【解析】集合,故故答案为C.2.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】由题意分别判断命题充分性与必要性,可得答案.【详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力.3.已知定义在上的函数满足,且函数在上是减函数,若,则的大小关系为()A.B.C.D.【答案】A【解析】【分析】化简,根据指数函数的单调性以及对数函数的单调性分别判断出,的取值范围,结合的单调性与奇偶性即可得结果.【详解】,是偶函数,,,,,,,又因为在上递减,,,即,故选A.【点睛】本题主要考查函数的奇偶性与单调性,以及指数函数与对数函数的性质,属于综合题.在比较,,,的大小时,首先应该根据函数的奇偶性与周期性将,,,通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.4.函数的一个单调递增区间是A.B.C.D.【答案】A【解析】【分析】首先由诱导公式对函数的解析式进行恒等变形,然后求解其单调区间即可.【详解】函数的解析式即:,其单调增区间满足:,解得:,令可得函数的一个单调递增区间为.故选A.【点睛】本题主要考查诱导公式的应用,三角函数单调区间的求解等知识,意在考查学生的转化能力和计算求解能力.5.数列满足:,若数列是等比数列,则的值是()A.1B.C.D.【答案】B【解析】【分析】根据等比数列的定义,可知,根据式子恒成立,可知对应项系数相同,从而求得结果.【详解】数列为等比数列即:上式恒成立,可知:本题正确选项:【点睛】本题考查利用等比数列的定义求解参数问题,关键是能够通过对应项系数相同求解出结果.6.已知双曲线的一个焦点与抛物线的焦点重合,抛物线的准线与双曲线交于两点,且的面积为(为原点),则双曲线的方程为()A.B.C.D.【答案】D【解析】【分析】求出抛物线焦点坐标即得椭圆焦点坐标,可得,由的面积为可得,联立两式求得的值,从而可得结果.【详解】,即焦点为,即焦点为,,①又的面积为,时,,,,得,②由①②得,,双曲线的方程为,故选D.【点睛】本题主要考查抛物线的方程与性质以及双曲线的方程与性质,属于中档题.求解双曲线方程的题型一般步骤:(1)判断焦点位置;(2)设方程;(3)列方程组求参数;(4)得结论.7.设,分别为具有公共焦点,的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为()A.B.C.2D.不确定【答案】C【解析】【分析】由题意首先求得的长度,然后结合勾股定理整理计算即可求得最终结果.【详解】设椭圆、双曲线的长轴长分别为,焦距为,则:,解得:,由勾股定理可得:,即:,整理可得:.故选C.【点睛】椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、勾股定理、|PF1|+|PF2|=2a,得到a,c的关系.8.已知函数的图象过点,且在上单调,把的图象向右平移个单位之后与原来的图象重合,当且时,,则()A.B.C.D.【答案】B【解析】【分析】代入点求出,根据平移关系和在上单调,确定,从而得到;找到区间内的对称轴,由对称性可得的值,进而代入求得结果.【详解】过点,即又又的图象向右平移个单位后与原图象重合在上单调令,,解得,当时,为的一条对称轴又当,且时,本题正确选项:【点睛】本题考查三角函数值的求解,关键是能够通过三角函数的图象平移、周期、特殊点等求解出函数解析式,再利用三角函数的对称性将问题转化为特定角的三角函数值求解.9.已知函数在上的最大值为,若函数有4个零点,则实数的取值范围为A.B.C.D.【答案】C【解析】【分析】先根据三次函数单调性确定,再结合函数图象确定实数的取值范围.【详解】因为在R上单调递增,所以,即,作图象,由图象可知,当时有即从而实数的取值范围为选C.【点睛】本题考查函数图象与性质,考查综合分析求解能力,属中档题.二、填空题(共6小题;共30分)10.若是复数,,则____________.【答案】【解析】【分析】根据复数除法运算的法则,化简复数,求出它的共轭复数,然后利用复数的乘法运算法则,计算出的