预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个项中,选出符合题目要求的一项.1.函数的定义域为()A.B.C.D.2.如果点在以点为焦点的抛物线上,则()A.B.C.D.3.命题:;命题:,,则下列命题中为真命题的是()A.B.C.D.4.在△中,,,,则△的面积等于()A.B.C.或D.或5.执行如图所示的程序框图,输出结果是.若,则所有可能的取值为()A.B.C.D.6.已知正方形的四个顶点分别为,,,,点分别在线段上运动,且,设与交于点,则点的轨迹方程是()A.B.C.D.7.已知平面向量,的夹角为,且,则的最小值为()A.B.C.D.18.已知数列满足下面说法正确的是()①当时,数列为递减数列;②当时,数列不一定有最大项;③当时,数列为递减数列;④当为正整数时,数列必有两项相等的最大项.A.①②B.②④C.③④D.②③第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.某校为了解高一学生寒假期间的阅读情况,抽查并统计了100名同学的某一周阅读时间,绘制了频率分布直方图(如图所示),那么这100名学生中阅读时间在小时内的人数为_____.10.在各项均为正数的等比数列中,若,则.11.直线与圆相交于,两点,若,则实数的值是_____.12.一个三棱锥的三视图如图所示,则该三棱锥的体积是;表面积是.13.实数满足若恒成立,则实数的最大值是.【答案】14.所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数.如:;;.已经证明:若是质数,则是完全数,.请写出一个四位完全数;又,所以的所有正约数之和可表示为;,所以的所有正约数之和可表示为;按此规律,的所有正约数之和可表示为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本题满分13分)已知函数.(Ⅰ)求函数的最小值;(Ⅱ)若,求的值.16.(本题满分13分)甲、乙两名同学参加“汉字听写大赛”选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:(Ⅰ)请画出甲、乙两人成绩的茎叶图.你认为选派谁参赛更好?说明理由(不用计算);(Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,90分以上的个数为,求随机变量的分布列和期望.17.(本题满分14分)如图,在三棱锥中,平面,.(Ⅰ)求证:;(Ⅱ)设分别为的中点,点为△内一点,且满足,求证:∥面;(Ⅲ)若,,求二面角的余弦值.即不妨设,则有,所以.因为,(Ⅲ)由(Ⅱ)可知平面的一个法向量.18.(本题满分13分)已知函数,.(Ⅰ)当时,求函数的极小值;(Ⅱ)若函数在上为增函数,求的取值范围.19.已知椭圆两焦点坐标分别为,,且经过点.(Ⅰ)求椭圆的标准方程;(Ⅱ)已知点,直线与椭圆交于两点.若△是以为直角顶点的等腰直角三角形,试求直线的方程.,20.(本题满分13分)已知是正数,,,.(Ⅰ)若成等差数列,比较与的大小;(Ⅱ)若,则三个数中,哪个数最大,请说明理由;(Ⅲ)若,,(),且,,的整数部分分别是求所有的值.所以.