预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心素养测评二十六平面向量的基本定理及向量坐标运算(25分钟50分)一、选择题(每小题5分,共35分)1.如图,设O是平行四边形ABCD两条对角线的交点,给出下列向量组:①与;②与;③与;④与.其中可作为该平面内其他向量的基底的是()A.①②B.①③C.①④D.③④【解析】选B.①中,不共线;③中,不共线.②④中的两向量共线,因为平面内两个不共线的非零向量构成一组基底,所以选B.2.(2020·杭州模拟)已知向量a=(1,1),b=(0,2),且λa+μb=(2,8),则λ-μ=()A.5B.-5C.1D.-1【解析】选D.因为a=(1,1),b=(0,2),所以λa+μb=(λ,λ+2μ),因为λa+μb=(2,8),所以(λ,λ+2μ)=(2,8),所以λ=2,μ=3,所以λ-μ=-1.3.已知点M(5,-6)和向量a=(1,-2),若=-3a,则点N的坐标为()A.(2,0)B.(-3,6)C.(6,2)D.(-2,0)【解析】选A.=-3a=-3(1,-2)=(-3,6),设N(x,y),则=(x-5,y+6)=(-3,6),所以即所以N为(2,0).4.已知平面向量=(1,2),=(3,4),则向量的模是()A.B.C.2D.5【解析】选C.因为向量=(1,2),=(3,4),所以=-=(1,2)-(3,4)=(-2,-2),所以||=2.5.已知向量m=与向量n=(3,sinA+cosA)共线,其中A是△ABC的内角,则角A的大小为()A.B.C.D.【解析】选C.因为m∥n,所以sinA(sinA+cosA)-=0,所以2sin2A+2sinAcosA=3.可化为1-cos2A+sin2A=3,所以sin=1,因为A∈(0,π),所以∈.因此2A-=,解得A=.6.已知向量=(k,12),=(4,5),=(-k,10),且A,B,C三点共线,则k的值是()A.-B.C.D.【解析】选A.=-=(4-k,-7),=-=(-2k,-2),因为A,B,C三点共线,所以,共线,所以-2×(4-k)=-7×(-2k),解得k=-.【变式备选】已知向量m=(λ+1,1),n=(λ+2,2),若(m+n)∥(m-n),则λ=________.【解析】因为m+n=(2λ+3,3),m-n=(-1,-1),又(m+n)∥(m-n),所以(2λ+3)×(-1)=3×(-1),解得λ=0.答案:07.已知||=1,||=,⊥,点C在∠AOB内,且与的夹角为30°,设=m+n(m,n∈R),则的值为()A.2B.C.3D.4【解析】选C.因为⊥,以OA为x轴,OB为y轴建立直角坐标系,=(1,0),=(0,),=m+n=(m,n).因为tan30°==,所以m=3n,即=3.二、填空题(每小题5分,共15分)8.已知D,E是△ABC的边BC的三等分点,点P在线段DE上,若=x+y,则xy的取值范围是________.【解析】因为=+,其中=+,设=λ,λ∈,所以=+,于是所以xy==-λ2+λ+=-+,由λ∈知,xy∈答案:9.已知向量a=(1,2),b=(-2,3),若ma-nb与2a+b共线(其中n∈R,且n≠0),则=________.【解析】由a=(1,2),b=(-2,3),得ma-nb=(m+2n,2m-3n),2a+b=(0,7),由ma-nb与2a+b共线,得7(m+2n)=0,则=-2.答案:-210.已知矩形ABCD的两条对角线交于点O,点E为线段AO的中点,若=m+n,则m+n的值为________.世纪金榜导学号【解析】如图所示,因为点E为线段AO的中点,所以=(+)=+=-+-=-,又=m+n,所以m=,n=-,所以m+n=-=-.答案:-(20分钟40分)1.(5分)已知向量=(2,x-1),=(1,-y)(xy>0),且∥,则+的最小值等于()A.2B.4C.8D.16【解析】选C.由∥得x-1+2y=0,即x+2y=1.又xy>0,所以+=(x+2y)=4++≥4+2=8.当且仅当x=,y=时取等号.2.(5分)(2020·山东省实验中学模拟)如图Rt△ABC中,∠ABC=,AC=2AB,∠BAC平分线交△ABC的外接圆于点D,设=a,=b,则向量=()A.a+bB.a+bC.a+bD.a+b【解析】选C.连接BD,DC.设圆的半径为r,在Rt△ABC中,∠ABC=,AC=2AB,所以∠BAC=,∠ACB=,∠BAC平分线交△ABC的外接圆于点D,所以∠ACB=∠BAD=∠CAD=,根据圆的性质BD=CD=AB,又因为在Rt△ABC中,AB=AC=r=OD,所以四边形ABDO为菱形,=