2022届高中数学讲义微专题65 直线的方程与性质 WORD版含解析.doc
沛芹****ng
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
2022届高中数学讲义微专题65 直线的方程与性质 WORD版含解析.doc
微专题65直线的方程与性质一、基础知识:(一)直线的要素与方程:1、倾斜角:若直线与轴相交,则以轴正方向为始边,绕交点逆时针旋转直至与重合所成的角称为直线的倾斜角,通常用表示(1)若直线与轴平行(或重合),则倾斜角为(2)倾斜角的取值范围2、斜率:设直线的倾斜角为,则的正切值称为直线的斜率,记为(1)当时,斜率不存在;所以竖直线是不存在斜率的(2)所有的直线均有倾斜角,但是不是所有的直线均有斜率(3)斜率与倾斜角都是刻画直线的倾斜程度,但就其应用范围,斜率适用的范围更广(与直线方程相联系)(4)越大,直线
高中数学讲义100微专题065直线的方程与性质.doc
微专题65直线的方程与性质一、基础知识:(一)直线的要素与方程:1、倾斜角:若直线与轴相交,则以轴正方向为始边,绕交点逆时针旋转直至与重合所成的角称为直线的倾斜角,通常用表示(1)若直线与轴平行(或重合),则倾斜角为(2)倾斜角的取值范围2、斜率:设直线的倾斜角为,则的正切值称为直线的斜率,记为(1)当时,斜率不存在;所以竖直线是不存在斜率的(2)所有的直线均有倾斜角,但是不是所有的直线均有斜率(3)斜率与倾斜角都是刻画直线的倾斜程度,但就其应用范围,斜率适用的范围更广(与直线方程相联系)(4)越大,直线
2022届高中数学讲义微专题77 定点定直线问题 WORD版含解析.doc
微专题77定点定直线问题一、基础知识:1、处理定点问题的思路:(1)确定题目中的核心变量(此处设为)(2)利用条件找到与过定点的曲线的联系,得到有关与的等式(3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立。此时要将关于与的等式进行变形,直至易于找到。常见的变形方向如下:①若等式的形式为整式,则考虑将含的项归在一组,变形为“”的形式,从而只需要先让括号内的部分为零即可②若等式为含的分式,的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去的式子变成常数(这
2022届高中数学讲义微专题66 直线与圆位置关系 WORD版含解析.doc
微专题66直线与圆位置关系一、基础知识:1、定义:在平面上到定点的距离等于定长的点的轨迹是圆2、圆的标准方程:设圆心的坐标,半径为,则圆的标准方程为:3、圆的一般方程:圆方程为(1)的系数相同(2)方程中无项(3)对于的取值要求:4、直线与圆位置关系的判定:相切,相交,相离,位置关系的判定有两种方式:(1)几何性质:通过判断圆心到直线距离与半径的大小得到直线与圆位置关系,设圆的半径为,圆心到直线的距离为,则:①当时,直线与圆相交②当时,直线与圆相切③当时,直线与圆相离(2)代数性质:可通过判断直线与圆的交
2022届高中数学讲义微专题49 等差数列性质 WORD版含解析.doc
微专题49等差数列性质一、基础知识:1、定义:数列若从第二项开始,每一项与前一项的差是同一个常数,则称是等差数列,这个常数称为的公差,通常用表示2、等差数列的通项公式:,此通项公式存在以下几种变形:(1),其中:已知数列中的某项和公差即可求出通项公式(2):已知等差数列的两项即可求出公差,即项的差除以对应序数的差(3):已知首项,末项,公差即可计算出项数3、等差中项:如果成等差数列,则称为的等差中项(1)等差中项的性质:若为的等差中项,则有即(2)如果为等差数列,则,均为的等差中项(3)如果为等差数列,则