预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

课时规范练59古典概型与几何概型课时规范练A册基础巩固组1.(2019山东德州模拟,4)如图,在边长为2的正方形中,随机撒1000粒豆子,若按π≈3计算,估计落到阴影部分的豆子数为()A.125B.150C.175D.200答案A解析由题意知圆的半径为1,则圆的面积近似为3,又正方形面积为4,则阴影部分面积为12×(4-3)=12.设落到阴影部分的豆子数为n,则n1000=124,n=125.故选A.2.(2019山东菏泽一模拟,6)《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图,若从该葭上随机取一点,则该点取自水下的概率为()A.1213B.1314C.2129D.1415答案C解析由题意知BC=2,B'C=5,设AC=x,则AB=AB'=x+2,在Rt△ACB'中,列勾股方程得52+x2=(x+2)2,解得x=214,所以从该葭上随机取一点,则该点取自水下的概率为P=xx+2=214214+2=2129,故选C.3.(2019广东一模,4)古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出已知线段的黄金分割点,具体方法如下:①取线段AB=2,过点B作AB的垂线,并用圆规在垂线上截取BC=12AB,连接AC;②以C为圆心,BC为半径画弧,交AC于点D;③以A为圆心,以AD为半径画弧,交AB于点E.则点E即为线段AB的黄金分割点.若在线段AB上随机取一点F,则使得BE≤AF≤AE的概率约为()(参考数据:5≈2.236)A.0.236B.0.382C.0.472D.0.618答案A解析由勾股定理可得AC=5≈2.236,由图可知BC=CD=1,AD=AE=5-1≈1.236,BE≈2-1.236=0.764,则0.764≤AF≤1.236,由几何概型可得,使得BE≤AF≤AE的概率约为1.236-0.7642=0.236,故选A.4.(2019广东深圳六校联考)在区间[-π,π]上随机取两个实数a,b,记向量OA=(a,4b),OB=(4a,b),则OA·OB≥4π2的概率为()A.1-π8B.1-π4C.1-π2D.1-3π4答案B解析在区间[-π,π]上随机取两个实数a,b,则点(a,b)在以2π为边长的正方形内,因为OA=(a,4b),OB=(4a,b),则OA·OB=4a2+4b2.因为OA·OB≥4π2,所以a2+b2≥π2,点(a,b)在以原点为圆心,以π为半径的圆外,且在以2π为边长的正方形内,所以OA·OB≥4π2的概率为P=4π2-π34π2=1-π4,故选B.5.(2019安徽芜湖模拟,8)中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术,蕴含了极致的数学美和丰富的传统文化信息.现有一幅剪纸的设计图,其中的4个小圆均过正方形的中心,且内切于正方形的两邻边.若在正方形内随机取一点,则该点取自黑色部分的概率为()A.3π32B.(3-22)π2C.(2-2)π4D.π8答案B解析如图所示,设正方形的边长为2,其中的4个圆过正方形的中心,且内切正方形的两邻边的小圆的半径为r,故BE=O2E=O2O=r,∴BO2=2r.∵BO2+O2O=BO=12BD=22,∴2r+r=22,∴r=2-22.∴黑色部分面积S=π2-222=3-222π,正方形的面积为1,∴在正方形内随机取一点,则该点取自黑色部分的概率为3-222π,故选B.6.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为()A.115B.15C.14D.12答案B解析由题意分析可得甲连续三天参加活动的所有情况为:第1~3天,第2~4天,第3~5天,第4~6天,共4种,故所求概率P=4·A33C63·A33=15.故选B.7.(2019江西名校(临川一中、南昌二中)联考,8)如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设DF=3AF=3,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A.37B.217C.413D.21313答案A解析由题,DF=3AF=3,可得AF=BD=1,AD=4,且∠ADB=120°,所以在三角形ADB中,cos∠ADB=AD2+BD2-AB22AD·BD,解得AB=21,所以概率为P=34DF234AB2=921=37,故选A.8.某校有包括甲、乙两人在内的5名大学生自愿参加该校举行的A,B两场国际学