预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则阴影部分所表示的集合的元素个数为()A.B.C.D.【答案】B【解析】依题意,,,阴影部分表示集合,故.选B.2.已知复的共轭复数为,若(为虚数单位),则在复平面内,复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A3.已知命题,则命题的否定为()A.,B.,C.,D.,【答案】C【解析】全命题的否定为特称命题,故其否定为,.选C.4.的展开式中,含项的系数为()A.B.C.D.【答案】C【解析】依题意,由排列组合知识可知,展开式中项的系数为.选C.5.已知双曲线的左焦点为,第二象限的点在双曲线的渐近线上,且,若直线的斜率为,则双曲线的近线方程为()A.B.C.D.【答案】A6.已知边长为的菱形中,,若,则的取值范围是()A.B.C.D.【答案】D【解析】如图所示,建立平面直角坐标系,故,,,故,,故,故.选D.7.已知,若,则=()A.B.C.D.【答案】D【解析】依题意,,因为,所以,故.选D.8.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出的值为35,则输入的值为()A.B.C.D.【答案】A9.某颜料公司生产两种产品,其中生产每吨产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一条之内甲、乙、丙三种染料的用量分别不超过50吨、160吨和200吨,如果产品的利润为300元/吨,产品的利润为200元/吨,则该颜料公司一天之内可获得的最大利润为()A.14000元B.16000元C.16000元D.20000元【答案】A【解析】依题意,将题中数据统计如下表所示:设该公司一天内安排生产产品吨、产品吨,所获利润为元,依据题意得目标函数为,约束条件为欲求目标函数的最大值,先画出约束条件表示的可行域,如图中阴影部分所示,则点,,,,作直线,当移动该直线过点时,取得最大值,则也取得最大值(也可通过代入凸多边形端点进行计算,比较大小求得).故.所以工厂每天生产产品40吨,产品10吨时,才可获得最大利润,为14000元.选A.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.10.已知函数,则方程在上的根的个数为()A.B.C.D.【答案】D【解析】因为,故;在同一直角坐标系中分别作出函数,,的图象如图所示,观察可知,两个函数的图象在上有6个交点,故方程在上有6个根.选D.点睛:涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.11.如图,小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的体积为()A.B.C.D.32【答案】B点睛:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.12.已知的外接圆的半径为,角的对边分别是,若,则面积的最大值为()A.B.C.D.【答案】C点睛:三角形中最值问题,一般转化为条件最值问题:先根据正、余弦定理及三角形面积公式结合已知条件灵活转化边和角之间的关系,利用基本不等式或函数方法求最值.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,满分20分.13.已知函数的部分图像如图所示,其中(点为图像的一个最高点),则函数=.【答案】【解析】依题意,,,故,故,将点代入可得,故,故.点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.14折纸已经成为开发少年儿童智力的一种重要工具和手段,已知在折叠“爱心”活动中,会产生如图所示的几何图形,其中四边形