预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

江西省第二次高三大联考试卷文科数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.【答案】A【解析】【分析】求出集合A,直接进行集合的交集运算.【详解】因为,所以.故选:A【点睛】本题考查集合的交集,考查运算求解能力,属于基础题.2.()A.B.C.D.【答案】B【解析】【分析】直接按照复数的乘法法则运算即可.【详解】.故选:B【点睛】本题考查复数的运算,属于基础题.3.已知函数,则()A.1B.2C.3D.4【答案】C【解析】分析】结合分段函数解析式,先求出,进而可求出.【详解】由题意可得,则.故选:C.【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.4.已知向量满足,那么与的夹角为()A.B.C.D.【答案】C【解析】【分析】将平方后将代入整理即可得到夹角.【详解】由,得,即,又,所以cosθ=﹣,又θ∈[0,π],所以θ=,故选C.【点睛】本题考查向量的模的运算及向量的夹角,属简单题5.若函数为奇函数,则()A.B.C.D.【答案】A【解析】【分析】首先利用奇函数满足列出方程求出,从而求得函数解析式,代入值求解即可.【详解】因为为奇函数,所以,即,整理得,解得,则,故.故选:A【点睛】本题考查函数的奇偶性,属于基础题.6.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?()A.B.C.D.【答案】D【解析】【分析】设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,,结合等比数列的性质可求出答案.【详解】设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,,.故选:D.【点睛】本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.7.若,则()A.B.C.D.【答案】B【解析】【分析】设,则,,通过三角函数诱导公式及二倍角公式进行化简求值即可.【详解】设,则,,故.故选:B【点睛】本题考查三角恒等变换,属于基础题.8.已知是定义在上的偶函数,且在上是增函数.设,,,则,,的大小关系是()A.B.C.D.【答案】A【解析】【分析】利用偶函数的对称性分析函数的单调性,利用指数函数、对数函数的单调性比较出的大小关系从而比较函数值的大小关系.【详解】由题意可知在上是增函数,在上是减函数.因为,,,所以,故.故选:A【点睛】本题考查函数的性质,利用函数的奇偶性及对称性判断函数值的大小关系,涉及指数函数、对数函数的单调性,属于基础题.9.如图,在底面边长为4,侧棱长为6的正四棱锥中,为侧棱的中点,则异面直线与所成角的余弦值是()A.B.C.D.【答案】D【解析】【分析】首先通过作平行的辅助线确定异面直线与所成角的平面角,在中利用余弦定理求出进而求出CE,再在中利用余弦定理即可得解.【详解】如图,取的中点,的中点,的中点,连接,,,,则,,从而四边形是平行四边形,则,且因为是的中点,是的中点,所以为的中位线,所以,则是异面直线与所成的角.由题意可得,.在中,由余弦定理可得,则,即.在中,由余弦定理可得.故选:D【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.10.给出下列三个命题:①“”的否定;②在中,“”是“”的充要条件;③将函数的图象向左平移个单位长度,得到函数的图象.其中假命题的个数是()A.0B.1C.2D.3【答案】C【解析】【分析】结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.【详解】对于命题①,因为,所以“”是真命题,故其否定是假命题,即①是假命题;对于命题②,充分性:中,若,则,由余弦函数的单调性可知,,即,即可得到,即充分性成立;必要性:中,,若,结合余弦函数的单调性可知,,即,可得到,即必要性成立.故命题②正确;对于命题③,将函数的图象向左平移个