预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将抛物线绕着原点旋转,所得抛物线的解析式是()A.B.C.D.2.如图,在正方形ABCD中,点E是CD的中点,点F是BC上的一点,且BF=3CF,连接AE、AF、EF,下列结论:①∠DAE=30°,②△ADE∽△ECF,③AE⊥EF,④AE2=AD•AF,其中正确结论的个数是()A.1个B.2个C.3个D.4个3.一组数据3,7,9,3,4的众数与中位数分别是()A.3,9B.3,3C.3,4D.4,74.直径为1个单位长度的圆上有一点A与数轴上表示1的点重合,圆沿着数轴向左滚动一周,点A与数轴上的点B重合,则B表示的实数是()A.B.C.D.5.若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A.45°B.60°C.72°D.90°6.下列方程中,是关于x的一元二次方程是()A.B.x2+2x=x2﹣1C.ax2+bx+c=0D.3(x+1)2=2(x+1)7.如图,将绕点A按顺时针旋转一定角度得到,点B的对应点D恰好落在BC边上.若,则CD的长为()A.1B.C.D.28.在Rt△ABC中,∠C=90°,tanA=,则sinA的值为()A.B.C.D.9.一元二次方程x(x﹣1)=0的解是()A.x=0B.x=1C.x=0或x=﹣1D.x=0或x=110.下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是()A.B.C.D.1二、填空题(每小题3分,共24分)11.如图,若抛物线与直线交于,两点,则不等式的解集是______.12.已知,若是一元二次方程的两个实数根,则的值是___________.13.如图,在菱形中,对角线交于点,过点作于点,已知BO=4,S菱形ABCD=24,则___.14.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.15.如右图是一个立体图形的三视图,那么这个立体图形的体积为______.16.关于x的分式方程有增根,则m的值为__________.17.在矩形中,点是边上的一个动点,连接,过点作与点,交射线于点,连接,则的最小值是_____________18.正六边形的边长为6,则该正六边形的面积是______________.三、解答题(共66分)19.(10分)如图,在中,,,,点从点出发沿以的速度向点移动,移动过程中始终保持,(点分别在线段、线段上).(1)点移动几秒后,的面积等于面积的四分之一;(2)当四边形面积时,求点移动了多少秒?20.(6分)如图,四边形、、都是正方形.求证:;求的度数.21.(6分)如图1,若要建一个长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.求:(1)若鸡场面积150平方米,鸡场的长和宽各为多少米?(2)鸡场面积可能达到200平方米吗?(3)如图2,若在鸡场内要用竹篱笆加建一道隔栏,则鸡场最大面积可达多少平方米?22.(8分)已知抛物线y=x2+mx+n与x轴交于点A(﹣1,0),B(2,0)两点.(1)求抛物线的解析式;(2)当y<0时,直接写出x的取值范围是.23.(8分)已知关于x的方程x2+ax+16=0,(1)若这个方程有两个相等的实数根,求a的值(2)若这个方程有一个根是2,求a的值及另外一个根24.(8分)请回答下列问题.(1)计算:(2)解方程:25.(10分)如图,在平面直角坐标系xOy中,直线y=x﹣2与反比例函数y=(k为常数,k≠0)的图象在第一象限内交于点A,点A的横坐标为1.(1)求反比例函数的表达式;(2)设直线y=x﹣2与y轴交于点C,过点A作AE⊥x轴于点E,连接OA,CE.求四边形OCEA的面积.26.(10分)如图,双曲线经过点,且与直线有两个不同的交点.(1)求的值;(2)求的取值范围.参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:先将原抛物线化为顶点式,易得出与y轴交点,绕与y轴交点旋转180°,那么根据中心对称的性质,可得旋转后的抛物线的顶点坐标,即可求得解析式.解:由原抛物线解析式可变为:,∴顶点坐标为(-1,2),又由抛物线绕着原点旋转1