预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.平均数B.方差C.中位数D.极差2.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是()A.1B.2C.D.23.已知(x2+y2)(x2+y2-1)-6=0,则x2+y2的值是()A.3或-2B.-3或2C.3D.-24.如图,在中,∠B=90°,AB=2,以B为圆心,AB为半径画弧,恰好经过AC的中点D,则弧AD与线段AD围成的弓形面积是()A.B.C.D.5.如图,,如果增加一个条件就能使结论成立,那么这个条件可以是A.B.C.D.6.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的7.有甲、乙、丙、丁四架机床生产一种直径为20mm圆柱形零件,从各自生产的零件中任意抽取10件进行检测,得出各自的平均直径均为20mm,每架机床生产的零件的方差如表:机床型号甲乙丙丁方差mm20.0120.0200.0150.102则在这四台机床中生产的零件最稳定的是().A.甲B.乙C.丙D.丁8.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有名学生,那么所列方程为()A.B.C.D.9.如图,直线y=x+3与x、y轴分别交于A、B两点,则cos∠BAO的值是()A.B.C.D.10.如图,双曲线经过斜边上的中点,且与交于点,若,则的值为()A.B.C.D.11.如图,四边形内接于,延长交于点,连接.若,,则的度数为()A.B.C.D.12.在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A.B.C.D.二、填空题(每题4分,共24分)13.已知,则=__________.14.观察下列各数:,,,,,……按此规律写出的第个数是______,第个数是______.15.太阳从西边升起是_____事件.(填“随机”或“必然”或“不可能”).16.如图,BA是⊙C的切线,A为切点,AC=1,AB=2,点D是⊙C上的一个动点,连结BD并延长,交AC的延长线于E,则EC的最大值为_______.17.已知是方程的根,则代数式的值为__________.18.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.三、解答题(共78分)19.(8分)如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE(1)求证:△DBE是等腰三角形(2)求证:△COE∽△CAB20.(8分)如图,中,,,平分,交轴于点,点是轴上一点,经过点、,与轴交于点,过点作,垂足为,的延长线交轴于点,(1)求证:为的切线;(2)求的半径.21.(8分)在平面直角坐标系xOy中,抛物线交y轴于点为A,顶点为D,对称轴与x轴交于点H.(1)求顶点D的坐标(用含m的代数式表示);(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线的位置,求平移的方向和距离;(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.22.(10分)有四张背面相同的纸牌A、B、C、D,其正面上方分别画有四个不同的几何图形,下方写有四个不同算式,小明将四张纸牌背面朝上洗匀后摸出一张,将其余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求摸出的两张纸牌的图形是中心对称图形且算式也正确的纸牌的概率.23.(10分)用适当的方法解下列方程:(1)(x﹣2)2﹣16=1(2)5x2+2x﹣1=1.24.(10分)阅读下列材料:小辉和小乐一起在学校寄宿三年了,毕业之际,他们想合理分配共同拥有的三件“财产”:一个电子词典、一台迷你唱机、一套珍藏版小说.他们本着“在尊重各自的价值偏好基础上进行等值均分”的原则,设计了分配方案,步骤如下(相应的数额如表二所示):①每人各自定出每件物品在心中所估计的价值;②计算每人所有物品估价总值和均分值(均分:按总人数均分各自估价总值);③每件物品归估价较高者所有;④计算差额(差额:每人所得物品的估价总值与均分值之差);⑤小乐拿22