预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2019年新疆乌鲁木齐市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中只有一项是符合题目要求的.1.若集合,,则集合()A.B.C.D.【答案】D【解析】【分析】进行并集的运算即可.【详解】解:,;.故选:D.【点睛】考查描述法的定义,以及并集的运算.2.已知复数(是虚数单位),则()A.B.C.D.【答案】B【解析】【分析】把代入,再由复数代数形式的乘除运算化简得答案.【详解】解:,故选:B.【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.3.已知命题,,则()A.,B.,C.,D.,【答案】D【解析】【分析】本题中所给的命题是一个全称命题,故其否定是一个特称命题,将量词改为存在量词,否定结论即可【详解】解:命题,,是一个全称命题,,故选:D.【点睛】本题考查了“含有量词的命题的否定”,属于基础题.解决的关键是看准量词的形式,根据公式合理更改,同时注意符号的书写.4.如图所示的程序框图,如果输入三个实数,,,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()A.B.C.D.【答案】A【解析】【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,由于该题的目的是选择最大数,因此根据第一个选择框作用是比较与的大小,故第二个选择框的作用应该是比较与的大小,而且条件成立时,保存最大值的变量.【详解】解:由流程图可知:第一个选择框作用是比较与的大小,故第二个选择框的作用应该是比较与的大小,条件成立时,保存最大值的变量故选:A.【点睛】本题主要考察了程序框图和算法,是一种常见的题型,属于基础题.5.双曲线的焦点到渐近线的距离为()A.B.C.D.【答案】D【解析】【分析】根据题意,由双曲线的标准方程可得双曲线的焦点坐标以及渐近线方程,由点到直线的距离公式计算可得答案.【详解】解:根据题意,双曲线的方程为,其焦点坐标为,其渐近线方程为,即,则其焦点到渐近线的距离;故选:D.【点睛】本题考查双曲线的几何性质,关键是求出双曲线的渐近线与焦点坐标.6.某几何体的三视图如图所示,该几何体的体积是()A.B.C.D.【答案】C【解析】【分析】根据三视图得到几何体的直观图,利用直观图即可求出对应的体积.【详解】解:由三视图可知该几何体的直观图是正方体去掉一个棱长为的正方体,正方体的边长为,三棱锥的三个侧棱长为,则该几何体的体积,故选:C.【点睛】本题主要考查三视图的应用,利用三视图还原成直观图是解决本题的关键.7.设,满足,则()A.有最小值,最大值B.有最小值,无最大值C.有最小值,无最大值D.既无最小值,也无最大值【答案】B【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数的最小值.【详解】解:作出不等式组对应的平面区域如图:(阴影部分).由得,平移直线,由图象可知当直线经过点时,直线的截距最小,此时最小.由,解得,代入目标函数得.即目标函数的最小值为.无最大.故选:B.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.8.公差不为零的等差数列的前项和为,若是与的等比中项,,则()A.B.C.D.【答案】C【解析】【分析】利用等差数列与等比数列的通项公式与求和公式即可得出.【详解】解:设等差数列的公差为,是与的等比中项,,,,联立解得:,.则.故选:C.【点睛】本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.9.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随意投一粒豆子,则豆子落在其内切圆外的概率是()A.B.C.D.【答案】C【解析】【分析】求出直角三角形内切圆半径,计算内切圆和三角形的面积,从而利用几何概型概率公式得出结论.【详解】直角三角形的斜边长为,设内切圆的半径为,则,解得,内切圆的面积为,豆子落在其内切圆外部的概率是,故选C.【点睛】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.10.设定义在上的奇函数满足(),则()A.B.C.D.【答案】D【解析】【分析】根据条件可得出,并得出在,上都是增函数,从而可讨论与的关系:时,显然满足;时,可得出,从而得出;时