预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共63页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第八章本章内容8.1相关分析和回归分析概述双变量关系强度测量的主要指标8.2.2相关系数利用相关系数进行变量间线性关系的分析通常需要完成以下两个步骤:,计算样本相关系数r;相关系数r的取值在-1~+1之间R>0表示两变量存在正的线性相关关系;r<0表示两变量存在负的线性相关关系R=1表示两变量存在完全正相关;r=-1表示两变量存在完全负相关;r=0表示两变量不相关|r|>0.8表示两变量有较强的线性关系;|r|<0.3表示两变量之间的线性关系较弱第二,对样本来自的两总体是否存在显著的线性关系进行推断。8.2.2.2Spearman等级相关系数8.2.3计算相关系数的基本操作(2)把参加计算相关系数的变量选到Variables框。(3)在CorrelationCoefficents框中选择计算哪种相关系数。(4)在TestofSignificance框中选择输出相关系数检验的双边(Two-Tailed)概率p值或单边(One-Tailed)概率p值。(5)选中Flagsignificancecorrelation选项表示分析结果中除显示统计检验的概率p值外,还输出星号标记,以标明变量间的相关性是否显著;不选中则不输出星号标记。(6)在Option按钮中的Statistics选项中,选中Cross-productdeviationsandcovariances表示输出两变量的离差平方和协方差。8.3偏相关分析利用偏相关系数进行分析的步骤8.3.2偏相关分析的基本操作8.3.3偏相关分析的应用举例8.4.2线性回归模型一元线性回归模型的数学模型:其中x为自变量;y为因变量;为截距,即常量;为回归系数,表明自变量对因变量的影响程度。多元线性回归模型x2、可决系数(判定系数、决定系数)8.4.3.2回归方程的显著性检验(方差分析F检验)回归方程的显著性检验是要检验被解释变量与所有的解释变量之间的线性关系是否显著。对于一元线性回归方程,检验统计量为:对于多元线性回归方程,检验统计量为:对于多元线性回归方程,检验统计量为:1、对于残差均值和方差齐性检验可以利用残差图进行分析。如果残差均值为零,残差图的点应该在纵坐标为0的中心的带状区域中随机散落。如果残差的方差随着解释变量值(或被解释变量值)的增加呈有规律的变化趋势,则出现了异方差现象。2、DW检验。DW检验用来检验残差的自相关。检验统计量为:DW=2表示无自相关,在0-2之间说明存在正自相关,在2-4之间说明存在负的自相关。一般情况下,DW值在1.5-2.5之间即可说明无自相关现象。3、特征根和方差比。根据解释变量的相关系数矩阵求得的特征根中,如果最大的特征根远远大于其他特征根,则说明这些解释变量间具有相当多的重复信息。如果某个特征根既能够刻画某解释变量方差的较大部分比例(0.7以上),又能刻画另一解释变量方差的较大部分比例,则表明这两个解释变量间存在较强的线性相关关系。4、条件指数。指最大特征根与第i个特征根比的平方根。通常,当条件指数在0-10之间时说明多重共线性较弱;当条件指数在10-100之间说明多重共线性较强;当条件指数大于100时说明存在严重的多重共线性。(2)选择被解释变量进入Dependent框。(3)选择一个或多个解释变量进入Independent(s)框。(4)在Method框中选择回归分析中解释变量的筛选策略。其中Enter表示所选变量强行进入回归方程,是SPSS默认的策略,通常用在一元线性回归分析中;Remove表示从回归方程中剔除所选变量;Stepwise表示逐步筛选策略;Backward表示向后筛选策略;Forward表示向前筛选策略。回归方程和进行各种检验;如果新建回归方程中所有变量的回归系数检验都显著,则回归方程建立结束。否则按上述方法再一次剔除最不显著的变量,直到再也没有可剔除的变量为止。逐步筛选(Stepwise)策略:在向前筛选策略的基础上结合向后筛选策略,在每个变量进入方程后再次判断是否存在应该剔除出方程的变量。因此,逐步筛选策略在引入变量的每一个阶段都提供了再剔除不显著变量的机会。8.4.4线性回归分析的其他操作1、Statistics按钮,出现的窗口可供用户选择更多的输出统计量。(4)Modelfit:SPSS默认输出项,输出判定系数、调整的判定系数、回归方程的标准误差、回归方程显著F检验的方程分析表。(5)Rsquaredchange:输出每个解释变量进入方程后引起的判定系数的变化量和F值的变化量。(6)Partandpartialcorrelation:输出方程中各解释变量与被解释变量之间的简单相关、偏相关系数。2、Options选项,出现的窗口可供用户设置多元线性回归分析中解释变量筛选的标准以及缺失值的处理方式。3、Plot选项,出现的窗口