预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共30页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

铁氧体软磁材料的性能和应用二、软磁铁氧体材料与其它软磁合金及金属粉芯材料参数比较三、软磁铁氧体材料的优缺点2、缺点:①低Bs,单位体积储能少。②导热差③抗拉强度小、脆、难加工,但金属易加工而需轧片或细粉。④未加工部位的尺寸有2%公差。以上优缺点决定了金属磁性材料用于较高磁通密度的低频直流,强电大功率场所,如电力工业、输电变压器,电机等;铁氧体主要用于高频、脉冲弱磁场下。四、常用软磁铁氧体材料五、Mn-Zn铁氧体材料②发展方向向超低功耗方向发展,已系列化,如TDKPC4044454647Pc95继续向高频化方向发展,可用1M的PC50可用4M的PHILIPS3F5向低功耗、高Bs、高Tc综合性能方向发展:如TDKPc90③开关电源变压器对功率铁氧体材料的要求变压器可传输功率为:Pth=cfBmaxAeWdPth——传输功率C——与开关电源电路工作型式有关系数,Bmax——最大允许磁通Ae——磁路有效截面积Wd——绕组设计参数即Pth∝fBmaxAe上式说明:a工作频率f越大,Pth越大b饱和磁通密度越高,Pth越大cAe越大(磁芯体积越大),Pth越大d在Pth一定情况下减少电源体积(减少Ae)必须增大f或Bmax即f×B为表征材料的性能因子但B是由材料成份决定不可无限提高(Mn-Zn约0.5T),而f提高后会引磁芯起发热,制约着Pth的提高,故引入参数PcPc=KfmBn=f∮BdH+Cef2B2/ρ+Prf=10-100km=1.3典型值n=2.5f>100Km继续增降低磁芯损耗:减Hc增ρ,减少晶粒尺寸当磁芯发热时磁芯能否正常工作,又引入一个物理量——居里温度。功率铁氧体要求高的Tc,综上所述,对功率材料的要求为:大的Bs防饱和f增大时有小的PL防发热高的Tc防过热矢效对磁导率μi要求不太高功耗与频率关系图:(DMR24)功耗与温度磁通密度关系图(DMR24)功耗与温度关系图(DMR24)B:饱和磁通密度(Bs)意义:磁通密度达到的最高值。饱和磁通密度与使用的关系:磁心饱和磁通密度越高、变压器可传输功率越大影响饱和磁通密度的因素:磁心密度:密度越大、饱和磁通密度越大温度:温度越高、饱和磁通密度越低配方C:居里温度意义:磁心从铁磁状态转变为顺磁状态温度,即从磁性材料转变为非磁性材料的温度居里温度与使用关系:居里温度要远远高于使用温度影响居里温度的因素:材料的配方、生产工艺μ值达到居里温度后变为1,与不导磁物质同饱和磁通密度与温度的关系曲线D:直流叠加特性意义:不作为材料特性介绍,本指标是磁心的特性。很多电感器在直流偏置场下工作,要求加直流的情况下磁心仍有很高的电感。通常要求电感系数下降率:AL(在加直流下)×100%AL(在不加直流下)直流叠加与使用的关系:直流叠加达不到要求会造成器件电感达不到要求影响直流叠加特性的因素:材料Bs直流叠加特性越好材料Br直流叠加特性越好测试温度会影响直流叠加特性磁心气隙越深直流叠加越好磁心截面积越大直流叠加越好⑤、我公司功率铁氧体材料命名方法DMR40东磁软磁号码东磁材料TDK材料2、高导铁氧体①主要用于局域网隔离变压器、差模滤波器宽带变压器、低功率驱动变压器等。②发展方向:高μi、宽频、宽温、低THD③高导铁氧体的几个主要指标A、起始磁导率及电感系数B、μi—T特性,温度系数C、μi—f特性D、比损耗特性E、THD特性A、起始磁导率电感系数意义:起始磁导率是反映材料导磁性的一个指标、指在小磁场低频下材料的磁导率。电感系数为磁性器件绕一匝时的电感量用符号AL表示,若电感器绕线圈匝数为N电感器的电感L=N2AL起始磁导率、电感系数与使用的关系:起始磁导率越高电感系数就越高,客户做成的器件的电感量就越高影响起始磁导率、电感系数的因素:起始磁导率与材料的配方和工艺有关电感系数受影响的因素为:起始磁导率越高电感系数就越高磁心Ae/Le越大,即磁心形状粗短、电感系数越高开气隙越深、电感系数越小B、μi–T特性意义:材料的磁导率随温度的变化特性为μi–T特性,μi在很宽的温度范围内变化小即为宽温材料μi–T特性与使用关系:μi–T特性越好,磁心在很宽的温度范围内电感量变化小,就可在很宽的温度范围内使用。影响μi–T特性的因素:材料的配方制粉工艺烧结工艺μi–T特性关系图(R7K)C、μi–f特性意义:材料的磁导率随使用频率的变化关系即为μi–f特性,当μi降低时的频率为截止频率μi–f特性与使用的关系:截止频率以上材料的μi值急剧下降,使材料的电感值急剧下降,会造成产品失效不能使用。所谓宽频即为截止频率高。影响μi–f特性的因素:材料的制造工艺材料的晶粒尺寸越小截止频率越高材料的磁导率越低截止频率越高产品的尺寸与形状μi–f特性曲线图(R7K)D、损耗角正切特性损耗角正切意义:表示在交变磁化过程中能量的