预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

图形的轴对称1.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做__轴对称图形__,这条直线就是它的__对称轴__.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做__对称轴__,折叠后重合的点是对应点.2.图形轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任意一对对应点所连线段的__垂直平分线__.轴对称图形的对称轴,是任意一对对应点所连线段的__垂直平分线__.对应线段、对应角__相等__.3.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;新图形上的每一点,都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴__垂直平分__.这样,由一个平面图形得到它的轴对称图形叫做__轴对称变换__.一个轴对称图形可以看作以它的一部分为基础,经轴对称变换而成.4.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到原图形的轴对称图形.1.(2014·龙东)下列交通标志图案是轴对称图形的是(B)3.(2014·牡丹江)下列对称图形中,是轴对称图形,但不是中心对称图形的有(B)4.(2014·黔南州)如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是(D)5.(2013·河北)下列图形中,既是轴对称图形又是中心对称图形的是(C)识别轴对称图形1.(1)(2014·永州)永州的文化底蕴深厚,永州人民的生活健康向上,如瑶族长鼓舞,东安武术,宁远举重等,下面的四幅简笔画是从永州的文化活动中抽象出来的,其中是轴对称图形的是(C)(2)(2014·深圳)下列图形中是轴对称图形但不是中心对称图形的是(B)作已知图形的轴对称图形解:如图所示:△DEF即与△ABC关于y轴对称的图形2.如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案.(注:①不得与原图案相同;②黑、白方块的个数要相同)(1)是轴对称图形,又是中心对称图形;(2)是轴对称图形,但不是中心对称图形;解:设计方案有多种,在设计时注意每一种图案的具体要求.(1)既是轴对称图形,还应关于中心点对称,有一定的对称及审美要求即可:(2)可不受中心对称的限制,只要是轴对称图形,且黑白数量相等即可:轴对称性质的应用解析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,【点评】求两条线段之和为最小,可以利用轴对称变换,使之变为求两点之间的线段,因为线段间的距离最短.(1)(2014·新疆)如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是(A)(2)(2014·黔西南州)如图,将矩形纸片ABCD折叠,使边AB,CB均落在对角线BD上,得折痕BE,BF,则∠EBF=__45__°.【点评】折叠的过程实际上就是一个轴对称变换的过程,轴对称变换前后的图形是全等图形,对应边相等,对应角相等.4.(2014·黔东南州)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为(D)