预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共36页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数学y=ax2+bx+c(其中a,b,c是常数,且a≠0)3.图象与性质4.图象的平移5.抛物线y=ax2+bx+c与系数a、b、c的关系2.抛物线的顶点常见的三种变动方式(1)两抛物线关于x轴对称,此时顶点关于x轴对称,a的符号相反;(2)两抛物线关于y轴对称,此时顶点关于y轴对称,a的符号不变;(3)开口反向(或旋转180°),此时顶点坐标不变,只是a的符号相反.3.二次函数与二次方程间的关系已知二次函数y=ax2+bx+c的函数值为k,求自变量x的值,就是解一元二次方程ax2+bx+c=k;反过来,解一元二次方程ax2+bx+c=k,就是把二次函数y=ax2+bx+c-k的函数值看作0,求自变量x的值.4.二次函数与二次不等式间的关系“一元二次不等式”实际上是指二次函数的函数值“y>0,y<0或y≥0,y≤0”,从图象上看是指抛物线在x轴上方或x轴下方的情况.1.(2016·怀化)二次函数y=x2+2x-3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(-1,-4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(-1,-4)2.(2016·山西)将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2-13B.y=(x-5)2-3C.y=(x-5)2-13D.y=(x+1)2-3DD二次函数的图象及性质(2)(2016·宁波)如图,已知抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0).①求m的值及抛物线的顶点坐标.②点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.解:①把点B的坐标为(3,0)代入抛物线y=-x2+mx+3得:0=-32+3m+3,解得:m=2,∴y=-x2+2x+3=-(x-1)2+4,∴顶点坐标为:(1,4).【点评】(1)对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴侧左;当a与b异号时(即ab<0),对称轴在y轴侧右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由Δ决定:Δ=b2-4ac>0时,抛物线与x轴有两个交点;Δ=b2-4ac=0时,抛物线与x轴有一个交点;Δ=b2-4ac<0时,抛物线与x轴没有交点.(2)此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.C待定系数法确定二次函数的解析式【点评】根据不同条件,选择不同设法.(1)若已知图象上的三个点,则设所求的二次函数为一般式y=ax2+bx+c(a≠0),将已知条件代入,列方程组,求出a,b,c的值;(2)若已知图象的顶点坐标或对称轴,函数最值,则设所求二次函数为顶点式y=a(x+m)2+k(a≠0),将已知条件代入,求出待定系数;(3)若已知抛物线与x轴的交点,则设抛物线的解析式为交点式y=a(x-x1)(x-x2)(a≠0),再将另一条件代入,可求出a值.(2)由题意可知:AD=DE,BE=10-6=4,AB=8,设AD=x,则ED=x,BD=AB-AD=8-x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8-x)2,解得x=5,∴AD=5;【点评】本题主要考查二次函数的综合应用,涉及知识点有待定系数法、矩形的性质、勾股定理、轴对称的性质及方程思想.在(2)中注意方程思想的应用,在(3)中确定出满足条件的P点的位置是解题的关键.(3)平行四边形OEAF的面积为24时,平行四边形OEAF不能为菱形,理由如下:当平行四边形OEAF的面积为24时,即-4x2+28x-24=24,化简,得x2-7x+12=0,x1=3,x2=4,∵OA=6,∴当x=4时,E(4,4),OE≠EA,∴平行四边形OEAF不能为菱形.当x=3时,E(3,4),此时平行四边形OEAF为菱形.13.二次函数错例分析)