预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第五章动量[考点解读]知识内容要求说明25、动量、中是、动量定理26、动量守恒定律ⅡⅡ动量定理和动量守恒定律的应用只限于一维的情况本章内容包括动量、冲量、反冲等根本概念和动量定理、动量守恒定律等根本规律。冲量是物体间相互作用一段时间的结果,动量是描述物体做机械运动时某一时刻的状态量,物体受到冲量作用的结果,将导致物体动量的变化。冲量和动量都是矢量,它们的加、减运算都遵守矢量的平行四边形法那么。本章中所涉及到的根本方法主要是一维的矢量运算方法,其中包括动量定理的应用和动量守定律的应用,由于力和动量均为矢量。因此,在应用动理定理和动量守恒定律时要首先选取正方向,正规定的正方向一致的力或动量取正值,反之取负值而不能只关注力或动量数值的大小;另外,理论上讲,只有在系统所受合外力为零的情况下系统的动量才守恒,但对于某些具体的动量守恒定律应用过程中,假设系统所受的外力远小于系统内部相互作用的内力,那么也可视为系统的动量守恒,这是一种近似处理问题的方法。[知识网络]冲量和动量动量物体的质量和速度的乘积叫做动量单位:千克·米/秒。动量的方向,即速度的方向。动量定理物体所受合力的冲量等于物体的动量变化。表达式Ft=P末-P初〔动量定理适用于变力作用的过程〕冲量力和力的作用时间的乘积叫做力的冲量单位牛·秒。冲量的方向,即力的方向。系统动量守恒定律系统不受外力或者所受外力之和为零,这个系统的总动量保持不变图12-1[解题方法指导]如图12-1所示,有两块大小不同的圆形薄板(厚度不计),质量绳相连结。开始时,两板水平放置并叠合在一起,静止于高度为0.2m处。然后自由下落到一固定支架C上,支架上有一半径为R‘(r<R’<R)的圆孔,圆孔与两薄板中心均在圆板中心轴线上,木板与支架发生没有机械能损失的碰撞。碰撞后,两板即别离,直到轻绳绷紧。在轻绳绷紧的瞬间,两物体具有共同速度V,如图12-2所示。求:(1)假设M=m,图12-2那么V值为多大(2)假设M/m=K,试讨论V的方向与K值间的关系。分析与解:开始M与m自由下落,机械能守恒。M与支架C碰撞后,M以原速率返回,向上做匀减速运动。m向下做匀加速运动。在绳绷紧瞬间,内力(绳拉力)很大,可忽略重力,认为在竖直方向上M与m系统动量守恒。(1)据机械能守恒:(M+m)gh=(M+m)V02所以,V0==2m/sM碰撞支架后以Vo返回作竖直上抛运动,m自由下落做匀加速运动。在绳绷紧瞬间,M速度为V1,上升高度为h1,m的速度为V2,下落高度为h2。那么:h1+h2=0.4m,h1=V0t-gt2,h2=V0t+gt2,而h1+h2=2V0t,故:所以:V1=V0-gt=2-10×0.1=1m/sV2=V0+gt=2+10×0.1=3m/s根据动量守恒,取向下为正方向,mV2-MV1=(M+m)V,所以那么当m=M时,V=1m/s;当M/m=K时,V=。讨论:①K<3时,V>0,两板速度方向向下。②K>3时,V<0,两板速度方向向上。③K=3时,V=0,两板瞬时速度为零,接着再自由下落。图13-1例2、如图13-1所示,物体A从高h的P处沿光滑曲面从静止开始下滑,物体B用长为L的细绳竖直悬挂在O点且刚和平面上Q点接触。mA=mB,高h及S(平面局部长)。假设A和B碰撞时无能量损失。(1)假设L≤h/4,碰后A、B各将做什么运动?(2)假设L=h,且A与平面的动摩擦因数为μ,A、B可能碰撞几次?A最终在何处?分析与解:当水平局部没有摩擦时,A球下滑到未碰B球前能量守恒,与B碰撞因无能量损失,而且质量相等,由动量守恒和能量守恒可得两球交换速度。A停在Q处,B碰后可能做摆动,也可能饶O点在竖直平面内做圆周运动。如果做摆动,那么经一段时间,B反向与A相碰,使A又回到原来高度,B停在Q处,以后重复以上过程,如此继续下去,假设B做圆周运动,B逆时针以O为圆心转一周后与A相碰,B停在Q处,A向右做匀速运动。由此分析,我们可得此题的解如下:(1)A与B碰撞前A的速度:mgh=mVA2,VA=因为mA=mB,碰撞无能量损失,两球交换速度,得:VA’=0,VB’=VA=设B球到最高点的速度为Vc,B做圆周运动的临界条件:mBg=mBV2/L[1]又因mBVB‘2=mBV2+mBg2L[2]将[1]式及VB’=代入[2]式得:L=2h/5图13-2即L≤2h/5时,A、B碰后B才可能做圆周运动。而题意为L=h/4<2h/5,故A与B碰后,B必做圆周运动。因此(1)的解为:A与B碰后A停在Q处,B做圆周运动,经一周后,B再次与