预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

离散型随机变量的方差一、复习回顾4、如果随机变量X服从两点分布为探究:甲、乙两名射手在同一条件下进行射击,分布列如下:p样本方差:思考:离散型随机变量的期望、方差与样本的期望、方差的区别和联系是什么?Dξ1=问题2:如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛?例1、随机抛掷一枚质地均匀的骰子,求向上一面的点数X的均值、方差和标准差。例2:有甲乙两个单位都愿意聘用你,而你能获得如下信息:解:二、几个常用公式:例3.篮球运动员在比赛中每次罚球命中率为p=0.6(1)求一次投篮时命中率次数X的期望与方差;(2)求重复5次投篮时,命中次数Y的期望与方差。相关练习:课堂练习:一般地,若离散型随机变量X的概率分布列为期望1、离散型随机变量取值的方差、标准差及意义析:审清题意是解决该题的关键.1.抓住蝇子一个个有顺序地飞出,易联想到把8只蝇子看作8个元素有序排列.●●☆●●●☆●,由于ξ=0“表示☆●●●●●☆●”,最后一只必为果蝇,所以有ξ=1“表示●☆●●●☆●●”P(ξ=0)=,同理有P(ξ=1)=ξ=2“表示●●☆●●☆●●”有P(ξ=2)=ξ=3“表示●●●☆●☆●●”有P(ξ=3)=ξ=4“表示●●●●☆●☆●”有P(ξ=4)=ξ=5“表示●●●●●☆☆●”有P(ξ=5)=ξ=6“表示●●●●●●☆☆”有P(ξ=6)=