预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2.3.2离散型随机变量的方差 教学目标: 知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 过程与方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差。 情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。 教学重点:离散型随机变量的方差、标准差 教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 教具准备:多媒体、实物投影仪。 教学设想:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差。 授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 内容分析: 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差. 回顾一组数据的方差的概念:设在一组数据,,…,中,各数据与它们的平均值得差的平方分别是,,…,,那么++…+ 叫做这组数据的方差 教学过程: 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 5.分布列: ξx1x2…xi…PP1P2…Pi…6.分布列的两个性质:⑴Pi≥0,i=1,2,…;⑵P1+P2+…=1. 7.二项分布:ξ~B(n,p),并记=b(k;n,p). ξ01…k…nP……8.几何分布:g(k,p)=,其中k=0,1,2,…,. ξ123…k…P……9.数学期望:一般地,若离散型随机变量ξ的概率分布为 ξx1x2…xn…Pp1p2…pn…则称……为ξ的数学期望,简称期望. 10.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 11平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值 12.期望的一个性质: 13.若ξB(n,p),则Eξ=np 二、讲解新课: 1.方差:对于离散型随机变量ξ,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,…,那么, =++…++… 称为随机变量ξ的均方差,简称为方差,式中的是随机变量ξ的期望. 2.标准差:的算术平方根叫做随机变量ξ的标准差,记作. 3.方差的性质:(1);(2); (3)若ξ~B(n,p),则np(1-p) 4.其它: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度; ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛 三、讲解范例: 例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差. 解:抛掷散子所得点数X的分布列为 ξ123456P从而 ; . 例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息: 甲单位不同职位月工资X1/元1200140016001800获得相应职位的概率P10.40.30.20.1 乙单位不同职位月工资X2/元1000140018002000获得相应职位的概率P20.40.30.20.1根据工资待遇的差异情况,你愿意选择哪家单位? 解:根据月工资的分布列,利用计算器可算得 EX1=1200×0.4+1400×0.3+1600×0.2+1800×0.1 =1400, DX1=(1200-1400)2×0.4+(1400-1400)2×0.3 +(1600-1400)2×0.2+(1800-1400)2×0.1 =40000; EX2=1000×0.4+1400×0.3+1800×0.2+2200×0.1=1400, DX2=(1000-1400)2×0.4+(1400-1400)×0.3+(1800-1400)2×0.2+(2200-1400)2×0.l =160000. 因为EX1=EX2,DX1<DX