预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共60页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

回归分析中的伪回归及其处理方法——长期均衡关系——误差修正回归模型回归分析的主要作用回归分析的主要作用回归分析应用预测中经常出现的问题回归分析应用预测中经常出现的问题回归分析应用预测中经常出现的问题回归分析应用预测中经常出现的问题较为普遍的现象!!回归分析应用预测中经常出现的问题一、长期均衡关系1.问题的提出由于许多经济变量是非稳定的,这就给经典的回归分析方法带来了很大限制。但是,如果变量之间有着长期的稳定关系(即它们之间是协整的cointegration),则是可以使用经典回归模型方法建立回归模型的。例如,中国居民人均消费水平与人均GDP变量之间的回归预测模型要比ARMA模型有更好的预测功能,其原因在于,从经济理论上说,人均GDP决定着居民人均消费水平,而且它们之间有着长期的稳定关系。某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。假设X与Y间的长期“均衡关系”由式描述:式中:t是随机扰动项。该均衡关系意味着:给定X的一个值,Y相应的均衡值也随之确定为0+1X。(1)Y等于它的均衡值:Yt-1=0+1Xt-1;(2)Y小于它的均衡值:Yt-1<0+1Xt-1;(3)Y大于它的均衡值:Yt-1>0+1Xt-1;在时期t,假设X有一个变化量Xt,如果变量X与Y在时期t与t-1末期仍满足它们间的长期均衡关系,则Y的相应变化量由式给出:实际情况往往并非如此可见,如果Yt=0+1Xt+t正确地提示了X与Y间的长期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从本质上说是“临时性”的。因此,一个重要的假设就是:随机扰动项t必须是平稳序列。显然,如果t有随机性趋势(上升或下降),则会导致Y对其均衡点的任何偏离都会被长期累积下来而不能被消除。式Yt=0+1Xt+t中的随机扰动项也被称为非均衡误差(disequilibriumerror),它是变量X与Y的一个线性组合:3.协整从这里已看到,非稳定的时间序列,它们的线性组合也可能成为平稳的。假设Yt=0+1Xt+t式中的X与Y是I(1)序列,如果该式所表述的它们间的长期均衡关系成立的话,则意味着由非均衡误差(*)式给出的线性组合是I(0)序列。这时我们称变量X与Y是协整的(cointegrated)。检验变量之间的协整关系,在建立计量经济学模型中是非常重要的。而且,从变量之间是否具有协整关系出发选择模型的变量,其数据基础是牢固的,其统计性质是优良的。建立回归模型时,如只要变量选择是合理的(具有长期稳定的关系,即协整关系),随机误差项一定是“白噪声”(即均值为0,方差不变的稳定随机序列),模型参数有合理的经济解释。这也解释了尽管这两时间序列是非稳定的,但却可以用经典的回归分析方法建立回归模型的原因。二、协整检验为了检验两变量Yt,Xt是否为协整,Engle和Granger于1987年提出两步检验法,也称为EG检验。第一步,用OLS方法估计方程:Yt=0+1Xt+t并计算非均衡误差,得到:称为协整回归(cointegrating)或静态回归(staticregression)。第二步,检验员的单整性,如果是稳定的序列,则认为因变量与自变量之间具有协整关系。检验的方法仍然是DF检验或ADF检验。而OLS法采用了残差最小平方和原理,因此估计量是向下偏倚的,这样将导致拒绝零假设的机会比实际情形大。于是对et平稳性检验的DF与ADF临界值应该比正常的DF与ADF临界值还要小。MacKinnon(1991)通过模拟试验给出了协整检验的临界值,下表是双变量情形下不同样本容量的临界值。例检验中国居民人均消费水平CPC与人均国内生产总值GDPPC的协整关系。(-4.47)(3.93)(3.05)三、误差修正模型前文已经提到,对于非稳定时间序列,可通过差分的方法将其化为稳定序列,然后才可建立经典的回归分析模型。例如:建立人均消费水平(Y)与人均可支配收入(X)之间的回归模型:式中,vt=t-t-1(1)如果X与Y间存在着长期稳定的均衡关系:Yt=0+1Xt+t且误差项t不存在序列相关,则差分式:Yt=1Xt+t中的t是一个一阶移动平均时间序列,因而是序列相关的;(2)如果采用差分形式进行估计,则关于变量水平值的重要信息将被忽略,这时模型只表达了X与Y间的短期关系,而没有揭示它们间的长期关系。因为,从长期均衡的观点看,Y在第t期的变化不仅取决于X本身的变化,还取决于X与Y在t-1期末的状态,尤其是X与Y在t-1期的不平衡程度。例如,使用Yt=1Xt+t回归时,很少出现截距项显著为零的情况,即我们常常