数列通项公式市公开课金奖市赛课一等奖课件.pptx
胜利****实阿
亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
数列通项公式市公开课金奖市赛课一等奖课件.pptx
数列通项公式①有数列没有通项公式②有数列有多个通项公式一、观测法(即猜想法,不完全归纳法)例:求数列3,5,9,17,33,…二、迭加法(加减法、逐加法)三、迭积法(逐积法)四、待定系数法:例:已知数列前n项和为,若为等差数列,求p与。例:设数列各项是一个等差数列与一个等比数列相应项和,若c1=2,c2=4,c3=7,c4=12,求通项公式cn五、公式法六、换元法当给出递推关系求时,主要掌握通过引进辅助数列能转化成等差或等比数列形式。例:已知数列递推关系为,且,,求通项公式。例:已知,,且,求。
数列通项公式市公开课金奖市赛课一等奖课件.pptx
数列通项公式①有数列没有通项公式②有数列有多个通项公式一、观测法(即猜想法,不完全归纳法)例:求数列3,5,9,17,33,…二、迭加法(加减法、逐加法)三、迭积法(逐积法)四、待定系数法:例:已知数列前n项和为,若为等差数列,求p与。例:设数列各项是一个等差数列与一个等比数列相应项和,若c1=2,c2=4,c3=7,c4=12,求通项公式cn五、公式法六、换元法当给出递推关系求时,主要掌握通过引进辅助数列能转化成等差或等比数列形式。例:已知数列递推关系为,且,,求通项公式。例:已知,,且,求。
常见递推数列通项公式的求法市公开课一等奖市赛课金奖课件.pptx
常见递推数列通项公式旳求法类型一:变式训练:变式训练:类型四:待定系数法(构造法)求递推数列旳通项:探究归纳,总结提升:解:类型五:类型六:例8
常见递推数列通项公式的求法市公开课一等奖市赛课金奖课件.pptx
常见递推数列通项公式旳求法类型一:变式训练:变式训练:类型四:待定系数法(构造法)求递推数列旳通项:探究归纳,总结提升:解:类型五:类型六:例8
数列通项公式的求法课件市公开课一等奖省赛课获奖PPT课件.pptx
等差数列通项公式:1、观察法观察法就是观察数列特征,横向看各项之间结构,纵向看各项与项数n内在联络。适合用于一些较简单、特殊数列。例1写出以下数列一个通项公式(1)-1,4,-9,16,-25,36,……;2、累加法例2已知数列,满足,求数列通项公式。3、累乘法例3、已知,,求通项公式4、利用数列前项和求通项公式:数列前项和与之间有以下关系:例4、设数列前项和(1)、求;(2)、求证数列为等比数列。变式题、已知数列前项和求证:为等比数列并求通项公式。5、结构等差、等比数列法例5、已知数列中,,(1)、求证