

一种基于特征的图像匹配方法及系统.pdf
岚风****55
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一种基于特征的图像匹配方法及系统.pdf
本发明公开一种基于特征的图像匹配方法及系统,该方法包括S1、建立图像匹配数据库;S2、将待匹配图像通过特征提取算法进行特征点检测,并提取待匹配图像的所有图像特征码;S3、选取待匹配图像所有图像特征码中的第一子集,将第一子集进行模糊匹配,得到第一匹配结果并保存用于下次模糊匹配;S4、选取待匹配图像所有图像特征码中的第二子集,将第二子集进行模糊匹配,得到第二匹配结果并保存用于下次模糊匹配;S5、重复所述步骤S3和所述步骤S4,直到使用待匹配图像所有图像特征码去匹配,即可得到唯一的匹配结果。该系统用于实现上述的
一种双目图像特征匹配方法及系统.pdf
本发明公开一种双目图像特征匹配方法及系统,所述方法包括:分别对左视图和右视图进行特征点提取,得到对应的特征点集合;对对应的特征点集合进行多层次约束筛选,得到一对多的匹配集合,所述一对多的匹配集合指的是匹配集合中每一个待匹配特征点对应多个候选特征点;对匹配集合中一对多的特征点进行三维重建,根据三维重建结果剔除异常特征点,得到新的匹配集合;从新的匹配集合中筛选出匹配种子点,根据匹配种子点,通过三角形匹配法进行局部匹配点筛选,完成特征匹配。本发明可实现高精度特征匹配,减少因一对多的特征点或假点带来的匹配误差,提
一种基于特征域匹配的分布式图像压缩方法、系统.pdf
本发明公开了一种基于特征域匹配的分布式图像压缩方法、系统,所述方法包括:获取主图像量化采样信号,并将所述主图像量化采样信号通过单一深度解码器处理获得初步重构图像和解码主信息特征;再使用单一深度图像压缩模型获得边信息图像的无损边信息特征和解码边信息特征;接着对解码主信息特征和解码边信息特征进行相关性匹配,并选取无损边信息特征进行特征域相关块对齐操作获得匹配特征;最后使用特征融合网络对初步重构图像和匹配特征进行迭代融合获得最终重构图像。本实施例通过基于特征域多尺度块匹配方法取得更好的率失真表现。
一种基于融合手工特征与深度特征的图像匹配方法.pdf
本发明公开了一种基于融合手工特征与深度特征的图像匹配方法,包括以下步骤:提取图像的手工特征生成手工特征描述符,对所得特征描述符进行L1归一化并对每一个元素求平方根;重新构建彩色图像的尺度金字塔,在相应金字塔层上提取局部图像块,并将图像块旋转至主方向;使用坐标注意力残差网络CAR‑HyNet模型对局部图像块提取深度特征,并生成深度特征描述符;训练CAR‑HyNet模型,并使用三元损失训练出最优模型;提取手工特征描述符与深度特征描述符双方对特征点的置信程度,将手工特征描述符与深度特征描述符进行决策级融合,生成
一种内窥镜图像特征点匹配方法及系统.pdf
本发明实施例提供一种内窥镜图像特征点匹配方法及系统。该方法包括基于两幅待匹配的内窥镜图像提取图像特征点,并基于特征描述子相似度完成图像特征点匹配,获取初始匹配点对集合;对初始匹配点对集合进行局部距离约束,结合仿射参数和对应特征点运动信息对特征点信息进行扩展,估算相似度边界,得到具有运动一致性的特征点对应关系集合;基于特征点对应关系集合对空间距离感知进行优化,生成双边仿射运动一致性模型,设置双边运动边界的自适应距离阈值参数,得到全局图像对应的内点匹配集合,实现特征点匹配。本发明实施例通过基于局部性保持的运动