预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

指数、对数函数的性质与图象知识要点3.根式的性质(1)当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时,a的n次方根用符号表示.(2)当n为偶数时,正数的n次方根有两个,它们互为相反数,这时,正数的正的n次方根用符号表示,负的n次方根用符号表示.正负两个n次方根可以合写为(a>0)(3)(4)当n为奇数时,;当n为偶数时,(5)负数没有偶次方根(6)零的任何次方根都是零4.分数指数幂的意义6.指数函数一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R8.对数一般地,如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数,式子logaN叫做对数式常用对数通常将log10N的对数叫做常用对数,为了简便,N的常用对数记作lgN自然对数通常将使用以无理数e=2.71828…为底的对数叫做自然对数,为了简便,N的自然对数logeN简记作lnN.12.对数函数.函数y=logax(a>0,且a≠1)叫做对数函数,其定义域为(0,+∞),值域为(-∞,+∞).因为对数函数y=logax与指数函数y=ax互为反函数,所以y=logax的图象与y=ax的图象关于直线y=x对称.13.对数函数的图象和性质对数函数y=logax的图象和性质分a>1及0<a<1两种情况.注意作图时先作y=ax的图象,再作y=ax的图象关于直线y=x的对称曲线,就可以得到y=logax的图象,其图象和性质见下表14换底公式答案:1.(1/2,1)2.13.D4.若loga2<logb2<0,则()(A)0<a<b<1(B)0<b<a<1(C)1<b<a(D)0<b<1<a5.方程loga(x+1)+x2=2(0<a<1)的解的个数是()(A)0(B)1(C)2(D)无法确定【解题指导】对于第(2)小题,也可以利用对数函数的图象,当底数大于1时,底数越大,在直线x=1左侧图象越靠近x轴而得.2.设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的大小.【解题指导】求解本题应注意以下三点:(1)将y转化为二次函数型;(2)确定a的取值范围;(3)明确logax的取值范围.【解题指导】求解本题的关键是会分类讨论.既要考虑到k,又要考虑到a;对第四种情形,要强调函数无意义.【解题指导】本题是一个内涵丰富的综合题.涉及的知识很广:定义域、不等式、单调性、复合函数、方程实根的分布等.解题时应着力于知识的综合应用和对隐含条件的发掘上.特别注意