预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局*CN103034870A*(12)发明专利申请(10)申请公布号CN103034870A(43)申请公布日2013.04.10(21)申请号201210543644.6(22)申请日2012.12.14(71)申请人南京思创信息技术有限公司地址210037江苏省南京市鼓楼区中央路399号天正国际广场6幢801室(72)发明人王迅赵云飞赵筠(74)专利代理机构南京纵横知识产权代理有限公司32224代理人董建林(51)Int.Cl.G06K9/62(2006.01)G06K9/00(2006.01)权利要求书权利要求书1页1页说明书说明书44页页附图附图11页(54)发明名称基于特征的船舶快速识别方法(57)摘要本发明涉及一种图像识别技术,尤其涉及基于特征的船舶快速识别方法,包括如下步骤:步骤一:手动标注船舶特征并建立船舶特征库;步骤二:通过船舶特征库的正负样本学习训练基于船舶特征的决策树分类器;步骤三:通过航道沿岸前端摄像头拍摄获得具航道船舶信息的视频采集图像,由分割器对视频采集图像进行图像分割,过滤非航道信息,保留有效的识别区域的图像信息;步骤四:将有效的识别区域的图像信息进行分块特征提取;步骤五:采用决策树分类器将提取的分块特征与船舶特征库对比。本发明能够快速的从航道中将船舶识别处理,便于后台智能分析和统计分析,系统对识别的结果迅速分析,以便于纠正识别错误。CN103487ACN103034870A权利要求书1/1页1.基于特征的船舶快速识别方法,其特征在于,包括如下步骤:步骤一:手动标注船舶特征并建立船舶特征库;步骤二:通过船舶特征库的正负样本学习训练基于船舶特征的决策树分类器;步骤三:通过航道沿岸前端摄像头拍摄获得具航道船舶信息的视频采集图像,对视频采集图像进行图像分割,过滤非航道信息,保留有效的识别区域的图像信息;步骤四:将有效的识别区域的图像信息进行分块特征提取;步骤五:采用决策树分类器将提取的分块特征与船舶特征库对比。2.根据权利要求1所述的基于特征的船舶快速识别方法,其特征在于上述第一步建立船舶特征库的具体过程如下:步骤一:从视频中取一帧图像,对图像进行分块,块大小设定为16*16;步骤二:对于每个图像块的类型进行手动标注,以得到训练样本的监督信息;用红色图像块标注为船的部分,绿色图像块标注为水面部分,蓝色图像块标注为其他部分,不参与计算;步骤三:将手动标注的结果分别保存为船舶和非船舶的正负样本文件。3.根据权利要求1所述的基于特征的船舶快速识别方法,其特征在于:设定4种航道的亮度等级,分别为“晴天”、“阴天”、“最暗”和“最亮”,用以概括一天中所有的光照条件;根据光照条件的不同,需要建立不同光照条件的船舶特征库,并由此训练得出不同光照情况下的决策树分类器。4.根据权利要求1所述的基于特征的船舶快速识别方法,其特征在于:在自动识别过程中,定期的根据航道的亮度等级进行分类器选择;统计获取航道河面区域内的32维灰度直方图,直方图归一化,获取直方图中最大柱值的位置,根据直方图最大柱值的位置L,来判断光照条件是否合适和选择不同的分类器;当5<L<=10时,选择加载“最暗”天气的分类器;当10<L<=15时,选择加载“阴天”天气的分类器;当15<L<=20时,选择加载“晴天”天气的分类器;当20<L<=25时,选择加载“最亮”天气的分类器;当L<=5或者L>25时,则光照太暗或太亮,条件不满足识别要求。5.根据权利要求1所述的基于特征的船舶快速识别方法,其特征在于:在步骤五中,当分块特征满足和水特征相似比例超过50%,判定为水,反之继续和船舶特征进行比对;当分块特征满足和船舶特征相似比例超过50%,判断为船舶并将船舶特征存储入船舶特征库,反之即为噪点。2CN103034870A说明书1/4页基于特征的船舶快速识别方法技术领域[0001]本发明涉及一种图像识别技术,尤其涉及船舶识别方法,属于智能航运管理技术领域。背景技术[0002]国内外常用的内河船舶检测方法,是利用计算机图像视觉分析技术、红外技术、射频识别技术和传感器技术。由于基于视频检测的计算机视觉技术具有检测范围大、提供信息丰富、安装维修方便等优点,被认为是最有发展前景的检测方式之一。[0003]目前,在陆上交通领域的智能视频分析技术已有广泛而较为成熟的应用,例如:对车牌的识别、车辆的跨线行驶、逆向行驶、车辆密度的监控、违章停车等。而在水上交通领域,特别是船舶检测,不能简单套用车辆识别的方式和算法,其主要原因在于水面各种光线反射和水纹变化等造成的复杂背景的剔除,以及船舶这样的低速物体运动轨迹的跟踪。[0004]同时摄像头拍摄的信息无效信息比较多,导致在识别过程中过滤无效信息浪费比较多的时间,如何能够快速定位船舶并将船舶识别出来,是