预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于加权直觉模糊集合的聚类模型摘要:针对已有基于直觉模糊集的聚类方法的局限性提出了一种基于加权直觉模糊集合的聚类模型——wifscm(clusteringmodelbasedonweightedintuitionisticfuzzysets)。在该模型中提出了特定特征空间下的等价样本和加权直觉模糊集合的概念;并推导出基于等价样本和加权直觉模糊集合的直觉模糊聚类算法的目标函数利用该目标函数推导出直觉模糊聚类中心迭代算法和隶属度矩阵迭代算法;定义了基于加权直觉模糊集合的密度函数确定了初始聚类中心减少了迭代次数。通过灰度图像分割实验证明了该模型的有效性同时与普通直觉模糊集fcm聚类算法(ifcm)相比聚类速度提高近百倍。关键词:直觉模糊集;加权直觉模糊集合;聚类中心;等价样本;隶属度矩阵;密度函数clusteringmodelbasedonweightedintuitionisticfuzzysetschangyan*zhangshi.bin(schoolofnetworkengineeringchengduuniversityofinformationtechnologychengdusichuan610225chinaabstract:tomakeupthelimitationsofexistingclusteringmethodsbasedonintuitionisticfuzzysetsaclusteringmodelcalledwifscm(clusteringmodelbasedonweightedintuitionisticfuzzysets)isproposedbasedonweightedintuitionisticfuzzysets.inthismodeltheconceptsofequivalentsamplesandweightedintuitionisticfuzzysetsisputforwardinspecialfeaturespaceandbasedonwhichtheobjectivefunctionofintuitionisticfuzzyclusteringalgorithmisproposed.iterativealgorithmsofclusteringcenterandmatrixofmembershipdegreeareinferredfromtheobjectivefunction.densityfunctionbasedonweightedintuitionisticfuzzysetsisdefinedandinitialclusteringcenterisgottentoreduceiterativetimes.theexperimentofgrayimagesegmentationshowsthatwifscmiseffectiveanditisfasterthanifcmalgorithmnearlyahundredtimes.concerningthelimitationsoftheexistingclusteringmethodsbasedonintuitionisticfuzzysetsaclusteringmodelcalledweightedintuitionisticfuzzysetmodel(wifscm)(clusteringmodelbasedonweightedintuitionisticfuzzysets)wasproposedbasedonweightedintuitionisticfuzzysets.inthismodeltheconceptsofequivalentsampleandweightedintuitionisticfuzzysetwereputforwardinspecialfeaturespaceandbasedonwhichtheobjectivefunctionofintuitionisticfuzzyclusteringalgorithmwasproposed.iterativealgorithmsofclusteringcenterandmatrixofmem