基于多尺度深度方向波网络的极化SAR图像分类方法.pdf
Jo****34
亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于多尺度深度方向波网络的极化SAR图像分类方法.pdf
本发明公开了一种基于多尺度深度方向波网络的极化SAR图像分类方法,本方法实现步骤为:(1)输入极化SAR图像;(2)提取泡利分解特征;(3)构建训练样本特征矩阵;(4)初始化多尺度深度方向波网络;(5)训练多尺度深度方向波网络;(6)构建测试样本特征矩阵;(7)得到测试样本的类标;(8)计算分类精度;(9)上色;(10)输出上色后的极化SAR图像。本发明将不同尺度的方向波滤波器作为多尺度深度方向波网络的滤波器,对极化SAR图像进行分类,使得本发明具有很好地保留极化SAR图像的方向特征和全局特征的优点。
基于深度方向波网络的极化SAR图像分类方法.pdf
本发明公开了一种基于深度方向波网络的极化SAR图像分类方法,本方法实现步骤为:(1)输入极化SAR图像;(2)提取泡利分解特征;(3)构建训练样本特征矩阵;(4)初始化卷积神经网络;(5)训练卷积神经网络;(6)构建测试样本特征矩阵;(7)得到测试样本的类标;(8)计算分类精度;(9)上色;(10)输出上色后的极化SAR图像。本发明将方向滤波器作为卷积神经网络的滤波器,对极化SAR图像进行分类,使得本发明具有很好地保留极化SAR图像的方向信息的优点。
基于复数轮廓波卷积神经网络的极化SAR图像分类方法.pdf
本发明公开了一种基于复数轮廓波卷积神经网络的极化SAR图像分类方法,主要解决现有技术分类精度较低的问题。其实现步骤是:1.输入待分类极化SAR图像的极化相干矩阵T并归一化;2.根据归一化后的矩阵,分别构造训练数据集和测试数据集的特征矩阵;3.构造复数卷积神经网络,进而得到复数轮廓波卷积神经网络;4.用训练数据集训练复数轮廓波卷积神经网络,得到训练好的模型;5.将测试数据集的特征矩阵输入到训练好的模型中进行分类,得到分类结果。本发明将卷积神经网络延拓至复数域进行运算并提取多尺度、多方向、多分辨特性的图像特征
基于随机森林多尺度卷积模型的极化SAR分类方法.pdf
本发明提出了一种基于随机森林多尺度卷积模型的极化SAR分类方法,用于解决现有技术中存在的分类准确率较低和分类时间较长的技术问题,实现步骤为:构建包含多尺度卷积模型和随机森林模型的随机森林多尺度卷积模型,其中多尺度卷积模型包括细化模块和至少两个输入模块,并初始化模型的相关参数;对待分类的极化SAR图像进行Lee滤波;对滤波后的极化SAR图像进行预处理;获取训练数据集;将训练数据集输入到多尺度卷积模型中进行模型训练,得到特征图featuremap,并将featuremap输入到随机森林模型进行模型训练,得到训
基于多尺度图分解的极化SAR图像分割算法.docx
基于多尺度图分解的极化SAR图像分割算法基于多尺度图分解的极化SAR图像分割算法摘要:极化合成孔径雷达(PolSAR)图像具有高分辨率和多角度多极化信息的特点,在遥感图像处理中具有广泛的应用。然而,由于极化SAR图像噪声复杂且分辨率较高,对其进行精确的分割一直是一个具有挑战性的问题。针对这个问题,本文提出了一种基于多尺度图分解的极化SAR图像分割算法。该算法通过将极化SAR图像分解为不同尺度的图像,构建了一个多尺度分割模型,以便更好地保留图像的细节和特征。实验证明,该算法在极化SAR图像分割中具有很高的准