预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

本发明提出了一种基于随机森林多尺度卷积模型的极化SAR分类方法,用于解决现有技术中存在的分类准确率较低和分类时间较长的技术问题,实现步骤为:构建包含多尺度卷积模型和随机森林模型的随机森林多尺度卷积模型,其中多尺度卷积模型包括细化模块和至少两个输入模块,并初始化模型的相关参数;对待分类的极化SAR图像进行Lee滤波;对滤波后的极化SAR图像进行预处理;获取训练数据集;将训练数据集输入到多尺度卷积模型中进行模型训练,得到特征图featuremap,并将featuremap输入到随机森林模型进行模型训练,得到训练好的随机森林多尺度卷积模型;对极化SAR图像进行分类。