

基于NSCT变换和DCNN的高光谱图像分类方法.pdf
一吃****永贺
亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于NSCT变换和DCNN的高光谱图像分类方法.pdf
本发明公开了基于NSCT变换和DCNN的高光谱图像分类方法,解决了现有技术中不能充分挖掘待分类高光谱图像纹理细节和方向性信息的问题。本发明的实现为:输入高光谱图像;进行NSCT变换;对变换后立体块归一化并进行取块操作;在样本集合中随机选取训练、验证和测试样本集;构造深度卷积神经网络,设置网络超参数;训练网络;测试样本输入网络得到实际分类标签,画地物分类结果图;分类标签与测试样本参考标签对比计算分类评价指标,画出训练和验证样本随迭代次数增加的损失曲线图,完成地物分类。本发明保留了高光谱图像更多的纹理细节、方
基于NSCT和SAE的高光谱图像分类方法.pdf
本发明公开了一种基于NSCT和SAE的高光谱图像分类方法,其实现步骤为:(1)输入图像;(2)预处理;(3)进行非下采样轮廓波变换;(4)选取系数子带;(5)选取正方形邻域图像块;(6)提取像素的局部纹理特征;(7)获得三维图像矩阵;(8)选择训练样例;(9)构建栈式自编码器SAE;(10)进行非线性变换操作;(11)微调模型中的参数;(12)输出高光谱图像的分类结果。本发明可以充分地利用高光谱图像的局部纹理特征,具有很高的分类准确率,可用于地质勘探领域中的高光谱图像的分类,为地物图像的绘制提供参考。
基于NSCT变换和压缩感知的图像融合.docx
基于NSCT变换和压缩感知的图像融合摘要图像融合在现代图像处理中是一个重要的问题。本文提出了一种基于NSCT变换和压缩感知的图像融合方法。该方法使用NSCT变换将源图像分解为多个子带,然后使用压缩感知技术选择最重要的子带进行融合,从而避免了传统的基于像素的融合方法中的问题。实验结果表明,该方法可以产生高质量的融合图像,并且具有比传统方法更好的视觉效果。关键词:图像融合;NSCT变换;压缩感知;像素基础Introduction图像融合在现代计算机视觉领域中具有广泛的应用。其目的是将来自不同传感器或取景角度的
基于SLIC和主动学习的高光谱遥感图像分类方法.docx
基于SLIC和主动学习的高光谱遥感图像分类方法基于SLIC和主动学习的高光谱遥感图像分类方法摘要:高光谱遥感图像分类是遥感领域中的一个重要问题,它在农业、环境监测、城市规划等方面具有广泛的应用。然而,由于高光谱图像数据的维度高、数据量大及类内样本差异大等特点,传统的分类方法往往无法很好地应对。本文基于SLIC和主动学习方法,提出了一种高效准确的高光谱遥感图像分类方法。通过SLIC算法的超像素分割将高光谱图像划分为更加稳定的空间单元,并通过主动学习方法选择最具代表性的样本进行分类,提高了分类的效果和准确性。
基于多特征图像集成的高光谱图像分类方法.docx
基于多特征图像集成的高光谱图像分类方法基于多特征图像集成的高光谱图像分类方法摘要:高光谱图像分类是遥感图像处理和分析的一项关键任务。针对高光谱图像中包含的大量光谱信息、空间信息以及上下文信息,本文提出了一种基于多特征图像集成的高光谱图像分类方法。该方法首先利用高光谱图像的光谱信息提取光谱特征,然后通过降维和选择算法进行特征选择,减少特征维度并提高分类性能。接着,利用高光谱图像的空间信息提取空间特征,采用纹理特征和形状特征进行空间特征提取和选择。最后,集成光谱特征和空间特征,通过分类器进行高光谱图像分类。实