基于卷积稀疏表示的多模态图像融合方法.pdf
景山****魔王
亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于卷积稀疏表示的多模态图像融合方法.pdf
本发明涉及一种基于卷积稀疏表示的多模态图像融合方法,首先,利用稀疏优化函数将源图像进行两尺度分解得到高频分量和低频分量;然后,将两尺度分解得到的高频和低频分量,根据多模态图像特点采用不同的融合策略,高频分量利用卷积稀疏表示对稀疏系数取最小值的融合策略,低频分量利用取平均的融合策略得到融合后图像的低频分量;最后将得到的融合后图像的高频分量和低频分量相加得到融合图像。相对其他三种融合方法,不论在主观视觉和客观评价指标上还是在计算效率上,本发明方法可以更好保留源图像的细节等纹理信息。
基于张量分解和卷积稀疏表示的多曝光图像融合.docx
基于张量分解和卷积稀疏表示的多曝光图像融合论文题目:基于张量分解和卷积稀疏表示的多曝光图像融合摘要:多曝光图像融合在计算机视觉和图像处理领域具有广泛的应用。目前,基于张量分解和卷积稀疏表示的方法已成为多曝光图像融合中的主要研究方向。本文提出了一种基于张量分解和卷积稀疏表示的多曝光图像融合方法,通过分解源图像的张量表示,并通过卷积稀疏表示方式重构融合图像。实验结果表明,该方法能够有效地融合曝光不足和曝光过度的图像信息,并取得了比传统方法更好的融合效果。关键词:多曝光图像融合,张量分解,卷积稀疏表示,融合效果
基于多形态稀疏表示的图像融合方法.pdf
本发明公开了一种基于多形态稀疏表示的图像融合方法,其实施步骤如下:(1)利用基于频率调谐的显著性检测方法(Frequency-tunedSalientRegionDetection,FT)提取红外图像的边缘成分,并采用Curvelet基对所得红外图像边缘成分进行稀疏表示。(2)由离散小波变换(DiscreteWaveletTransform,DWT)、离散余弦变换(DiscreteCosineTransform,DCT)构成多形态稀疏基,并利用其对可见光图像进行稀疏表示,得到图像光滑成分和纹
一种基于卷积稀疏表示的多源指纹图像融合方法.pdf
一种基于卷积稀疏表示的多源指纹图像融合方法,包括如下步骤:1)获取预先配准好内部和外部指纹图像,采用基于卷积稀疏的形态成分分析模型的稀疏编码得到指纹图像的卡通与纹理分量的稀疏系数图;2)根据指纹图像质量评价指标方向确定度的值,确定权重添加方式,将其添加至两种源指纹图像的卡通与纹理分量中;3)采用基于卷积稀疏表示的融合方法对两种源指纹图像的卡通与纹理分量分别进行融合,由加权平均规则获得卡通与纹理分量的融合系数图,对两种分量的融合系数图进行重建得到融合指纹图像。本发明算法能够保留更多的指纹细节、纹理、边缘信息
基于卷积分析算子的多模态图像融合方法.pdf
本发明公开了一种基于卷积分析算子的多模态图像融合方法,包括以下步骤:步骤1,使用快速傅里叶变换分解源图像,分别获得低频分量和高频分量。步骤2,低频分量的融合;步骤3,高频分量的融合;步骤4,根据低频分量的融合结构和高频分量的融合结果重构图像。本发明的优点是:更好地表达图像特征,显着提高了融合图像的重建质量,更好地保留重建图像中的边缘。