一种基于优化卷积神经网络分类的数据增强方法.pdf
小凌****甜蜜
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一种基于优化卷积神经网络分类的数据增强方法.pdf
本发明公开了一种基于优化卷积神经网络分类的数据增强方法,其特征在于,包括如下步骤:1)获取一维信号数据;2)生成二维灰度图像;3)得到二维图像;4)图像重塑;5)训练。这种方法能够增加较少数据类型的数据量进而达到数据平衡的目的,获得的二维灰度图像能够最大程度的保留原始信号的信息,避免因为噪声滤波等操作带来的数据丢失问题,这种方法也能提高数据处理的效率、提高图像分类的准确率。
基于级联卷积神经网络模型的电力数据的分类方法.pdf
本发明公开了一种基于级联卷积神经网络模型的电力数据的分类方法,首先采用多分类器进行电力数据的预分类,如果分类类型属于该多分类器置信度较高的分类类型,则可将该分类类型作为最终的分类结果,如果对应的分类类型属于该多分类器置信度较低的分类类型,则启用联级分类器进行重新分类,其中,联级分类器为针对多分类器中置信度较低的分类类型,而训练获得的擅长于该类型分类的多个弱分类器构成的联级分类器,通过上述多分类器的预分类可实现快速分类的目的,同时通过后续联级分类器再次分类,可实现纠偏的目的,弥补多分类器的准确率低的问题,实
一种基于卷积神经网络的多元时序数据的分类方法.pdf
本发明公开了一种基于卷积神经网络的多元时序数据的分类方法,它包括S1:获取多元时间序列数据;S2:对获取的多元时间序列数据进行去噪预处理;S3:采用卷积神经网络对预处理得到的多元时间序列数据降维;S4:对降维得到的数据采用分段聚合算法进行分段,计算聚合后的序列数据的欧式距离,根据欧式距离定义阈值进行区分并形成分类结果。本发明取得的有益效果是:既能较好保留原多元时序数据的基本结构特征,又能采用分段聚合方法对其进行分类分析;采用卷积神经网络对原多元时序数据降维表示;然后采用分段聚合的方法对降维表示后的结果进行
一种基于样条卷积神经网络的图像分类方法.pdf
本发明提出了一种基于样条卷积神经网络的图像分类方法,其主要内容包括:样条卷积神经网络、通用计算图形处理器算法,其过程为,样条卷积神经网络使用一种新型样条卷积层构建深度神经网络,由卷积层接收不规则的结构化数据,将其映射到定向图作为输入,在空间卷积层中,节点特征使用可训练的连续核函数进行聚合,提出基于B样条的新型卷积算子,B样条基函数具有局部支持性质。本发明提出一种新型的可训练卷积运算符,卷积滤波器在空间域中运行并聚合局部特征,应用可训练的连续核函数,通过可训练的B样条控制值进行参数化,能快速进行训练和推理,
基于图卷积神经网络的特征增强云容器异常日志分类方法.pdf
本公开实施例中提供了一种基于图卷积神经网络的特征增强云容器异常日志分类方法,属于数据处理技术领域,具体包括:从异常日志数据集中读取异常日志;将异常日志划分为堆栈跟踪数据帧;将堆栈跟踪数据帧进行标记和裁剪;将堆栈跟踪数据帧构建为Bert模型的输入特征向量F