一种基于样条卷积神经网络的图像分类方法.pdf
依波****bc
亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于样条卷积神经网络的图像分类方法.pdf
本发明提出了一种基于样条卷积神经网络的图像分类方法,其主要内容包括:样条卷积神经网络、通用计算图形处理器算法,其过程为,样条卷积神经网络使用一种新型样条卷积层构建深度神经网络,由卷积层接收不规则的结构化数据,将其映射到定向图作为输入,在空间卷积层中,节点特征使用可训练的连续核函数进行聚合,提出基于B样条的新型卷积算子,B样条基函数具有局部支持性质。本发明提出一种新型的可训练卷积运算符,卷积滤波器在空间域中运行并聚合局部特征,应用可训练的连续核函数,通过可训练的B样条控制值进行参数化,能快速进行训练和推理,
一种基于深度卷积神经网络的图像分类处理方法.pdf
本发明公开了一种基于深度卷积神经网络的图像分类处理方法,包括:建立VGG16卷积神经网络分类模型;将已有的MIAS医学图像数据库中的图像处理成适用于VGG16卷积神经网络分类模型的图像,将图像分成训练集和测试集;对已有的VGG16卷积神经网络进行迁移学习,即前面的层不动,对softmax层进行改动;将训练集输入修改后的VGG16卷积神经网络进行分类训练,得到训练后的VGG模型;将测试集输入训练后的VGG模型,输出图像预测结果。本发明保留较大局部范围内的特征相关性,因此可以使图像分割的关键特征更加明显,病变
基于卷积神经网络的医学图像分类方法研究.docx
基于卷积神经网络的医学图像分类方法研究标题:基于卷积神经网络的医学图像分类方法研究摘要:医学图像分类在医学诊断、疾病预测和治疗方案选择等方面具有重要的应用价值。卷积神经网络(CNN)在医学图像分类任务中具有出色的性能,成为当前研究的热点。本论文通过对卷积神经网络的原理和医学图像分类方法的研究,提出了一种基于卷积神经网络的医学图像分类方法。该方法通过使用深度卷积神经网络模型,提取医学图像的特征,然后通过全连接层进行分类预测。实验结果表明,该方法在医学图像分类任务中取得了较好的性能,具有很大的潜力和应用前景。
基于深度卷积神经网络的图像分类.doc
(完整word版)基于深度卷积神经网络的图像分类(完整word版)基于深度卷积神经网络的图像分类PAGE\*MERGEFORMAT-25-(完整word版)基于深度卷积神经网络的图像分类MACROBUTTONMTEditEquationSection2EquationChapter1Section1SEQMTEqn\r\h\*MERGEFORMATSEQMTSec\r1\h\*MERGEFORMATSEQMTChap\r1\h\*MERGEFORMATSHANGHAIJIAOT
基于深度卷积神经网络的图像分类.doc
(完整word版)基于深度卷积神经网络的图像分类(完整word版)基于深度卷积神经网络的图像分类PAGE\*MERGEFORMAT-25-(完整word版)基于深度卷积神经网络的图像分类MACROBUTTONMTEditEquationSection2EquationChapter1Section1SEQMTEqn\r\h\*MERGEFORMATSEQMTSec\r1\h\*MERGEFORMATSEQMTChap\r1\h\*MERGEFORMATSHANGHAIJIAOT